Газочувствительные свойства наноструктур дисульфида молибдена
- Authors: Nalimova S.S.1,2, Shomakhov Z.V.3, Morozova N.A.1, Kondrat'ev V.M.4,2, Bui K.D.1, Moshnikov V.A.1
-
Affiliations:
- Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
- St. Petersburg Academic University of the Russian Academy of Sciences (Alferov University)
- Kabardino-Balkarian State University named after H. M. Berbekov
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 61, No 1–2 (2025)
- Pages: 111-117
- Section: МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ФУНКЦИОНАЛЬНЫЕ ХАЛЬКОГЕНИДНЫЕ СОЕДИНЕНИЯ: ФИЗИКА, ТЕХНОЛОГИИ И ПРИМЕНЕНИЯ”, МОСКВА, 23–27 июня 2024 г.
- URL: https://journals.rcsi.science/0002-337X/article/view/307071
- DOI: https://doi.org/10.31857/S0002337X25010116
- EDN: https://elibrary.ru/kfwysu
- ID: 307071
Cite item
Abstract
Gas-sensitive layers of MoS2 were synthesized using a hydrothermal method. Their morphology was studied by scanning electron microscopy and the surface composition was analyzed by X-ray photoelectron spectroscopy. The interaction of the synthesized layers with isopropanol vapor at room temperature was examined using impedance spectroscopy. The results demonstrate their potential application for detecting reducing gases at room temperature.
About the authors
S. S. Nalimova
Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin); St. Petersburg Academic University of the Russian Academy of Sciences (Alferov University)
Email: sskarpova@list.ru
Prof. Popov St., 5 lit. F, Saint Petersburg, 197022 Russia; Khlopina St., 8, bld. 3, Saint Petersburg, 194021 Russia
Z. V. Shomakhov
Kabardino-Balkarian State University named after H. M. Berbekov
Email: sskarpova@list.ru
Chernyshevsky St., 173, Nalchik, 360004 Russia
N. A. Morozova
Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
Email: sskarpova@list.ru
Prof. Popov St., 5 lit. F, Saint Petersburg, 197022 Russia
V. M. Kondrat'ev
Moscow Institute of Physics and Technology (National Research University); St. Petersburg Academic University of the Russian Academy of Sciences (Alferov University)
Email: sskarpova@list.ru
Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701 Russia; Khlopina St., 8, bld. 3, Saint Petersburg, 194021 Russia
K. D. Bui
Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
Email: sskarpova@list.ru
Prof. Popov St., 5 lit. F, Saint Petersburg, 197022 Russia
V. A. Moshnikov
Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
Author for correspondence.
Email: sskarpova@list.ru
Prof. Popov St., 5 lit. F, Saint Petersburg, 197022 Russia
References
- Карманов А.А., Пронин И.А., Якушова Н.Д., Комолов А.С., Мошников В.А.Исследование поверхностных превращений в золь–гель-пленках на основе оксида цинка при ультрафиолетовом фотоотжиге методом рентгеновской фотоэлектронной спектроскопии // Неорган. материалы. 2022. Т. 58. № 11. С. 1184–1191. https://doi.org/10.31857/S0002337X22110070
- Крастева Л.К., Димитров Д.Ц., Папазова К.И., Николаев Н.К., Пешкова Т.В., Мошников В.А., Грачева И.Е., Карпова С.С., Канева Н.В.Синтез и характеризация наноструктурированных слоев оксида цинка для сенсорики // ФТП. 2013. Т. 47. № 4. С.564–569.
- Кононова И.Е., Кононов П.В., Мошников В.А.Развитие модели образования материалов с иерархической структурой пор, созданных в условиях золь–гель-процессов // Неорган. материалы. 2018. Т. 54. № 5. С. 500–512.
- Налимова С.С., Мякин С.В., Мошников В.А.Управление функциональным составом поверхности и улучшение газочувствительных свойств металлооксидных сенсоров посредством электронно-лучевой обработки // ФХС. 2016. Т. 42. № 6.С. 773–780.
- Zhao J., Wang H., Cai Y., Zhao J., Gao Z., Song Y.-Y.The challenges and opportunities for TiO2nanostructures in gas sensing // ACS Sens. 2024.V.9. № 4. P. 1644–1655. https://doi.org/10.1021/acssensors.4c00137
- Shi Y.,Li X.,Sun X.F.,Shao X.,Wang H.Y.Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detection // J. Alloys Compd.2023.V. 963.P. 171190. https://doi.org/10.1016/ j.jallcom.2023.171190
- Рябко А.А., Бобков А.А., Налимова С.С., Максимов А.И., Левицкий В.С., Мошников В.А., Теруков Е.И.Газочувствительность наноструктурированных покрытий на основе наностержней оксида цинка при комбинированной активации // ЖТФ. 2022. Т. 92. № 5.С.758–764. https://doi.org/10.21883/JTF.2022.05.52382.314-21
- Krishna K.G., Parne S., Pothukanuri N., Kathirvelu V., Gandi S., Joshi D.Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review // Sens. Actuators, A. 2022. V. 341.P.113578. https://doi.org/10.1016/j.sna.2022.113578
- Tian W., Liu X., Yu W.Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review // Appl. Sci. 2018. V. 8. P. 1118. https://doi.org/10.3390/app8071118
- Seekaew Y., Phokharatkul D., Wisitsoraat A., Wongchoosuk C.Highly sensitive and selective room-temperature NO2gas sensor based on bilayer transferred chemical vapor deposited graphene // Appl. Surf. Sci. 2017. V. 40. P. 357–363. https://doi.org/10.1016/j.apsusc.2017.01.286
- Buckley D.J., Black N.C.G., Castanon E.G., Melios C., Hardman M., Kazakova O.Frontiers of graphene and 2D material-based gas sensors for environmental monitoring // 2D Mater. 2020. V. 7. № 3. P. 032002. https://doi.org/10.1088/2053-1583/ab7bc5
- Wang Z., Bu M., Hu N., Zhao L.An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge // Composites, Part B. 2023. V. 248. P. 110378. https://doi.org/10.1016/j.compositesb.2022.110378
- Mihin A.O., Firsov D.D., Komkov O.S.Investigation of energy transitions in MoS2by photoreflectance spectroscopy method // J. Phys.: Conf. Ser. 2020. V. 1695. P. 012111. https://doi.org/10.1088/1742-6596/1695/1/012111
- Kumar R., Zheng W., Liu X., Zhang J., Kumar M.MoS2-Based Nanomaterials for Room-Temperature Gas Sensors // Adv. Mater. Technol. 2020. P. 1901062. https://doi.org/10.1002/admt.201901062
- Sun J., Li X., Guo W., Zhao M., Fan X., Dong Y., Xu C., Deng J., Fu Y.Synthesis methods of two-dimensional MoS2: a brief review // Crystals. 2017. V. 7. № 7. P. 198. https://doi.org/10.3390/cryst7070198
- Lee S.-J., Son Y.-S., Choi J.-H., Kim S.-S., Park S.-Y.Morphology and catalytic performance of MoS2hydrothermally synthesized at various pH values // Catalysts. 2021. V. 11. № 10. P. 1229. https://doi.org/10.3390 /catal11101229
- Wei R., Yang H., Du K., Fu W., Tian Y., Yu Q., Liu S., Li M., Zou G.A facile method to prepare MoS2with nanoflower-like morphology // Mater. Chem. Phys. 2008. V. 108. P.188–191. https://doi.org/10.1016/j.matchemphys.2007.10.007
- Shokri A., Salami N.Gas sensor based on MoS2monolayer // Sens. Actuators, B. 2016. V. 236. P.378–385. https://doi.org/10.1016/j.snb.2016.06.033
- Kumar R., Goel N., Kumar M.UV-Activated MoS2Based Fast and Reversible NO2Sensor at Room Temperature // ACS Sens. 2017. V. 2. № 11. P. 1744–1752. https://doi.org/10.1021/acssensors.7b00731
- Rajbhar M.K., De S., Sanyal G., Kumar A., Chakraborty B., Chatterjee S.Defect-engineered 3D nanostructured MoS2for detection of ammonia gas at room temperature // ACS Appl. Nano Mater. 2023. V. 6. № 7. P. 5284–5297. https://doi.org/10.1021/acsanm.2c05361
- Ponnusamy K.M., Ghuge R.S., Raveendran N., Satheesh P.P., Durairaj S., Eswaran S.K., Heo K., Sivalingam Y., Chandramohan S.Vertical MoS2nanosheets via space-confined CVD for room temperature photo-enhanced highly selective triethylamine sensing //ACS Appl. Nano Mater. 2024. V. 7. № 6. P. 6691–6703. https://doi.org/10.1021/acsanm.4c00697
- Liu H., Zhang S., Cheng Q., Wang L., Wang S.A mini review on the recent progress of MoS2-based gas sensors // Catal. Lett. 2024. V. 154. № 4. P. 1375–1384. http://doi.org/10.1007/s10562-023-04436-6
- Bobkov A., Luchinin V., Moshnikov V., Nalimova S., Spivak Y.Impedance spectroscopy of hierarchical porous nanomaterials based on por-Si, por-Si incorporated by Ni and metal oxides for gas sensors // Sensors. 2022. V. 22. № 4. P. 1530. https://doi.org/10.3390/s22041530
- Kondratev V.M., Vyacheslavova E.A., Shugabaev T., Kirilenko D.A., Kuznetsov A., Kadinskaya S.A., Shomakhov Z.V., Baranov A.I., Nalimova S.S., Moshnikov V.A., Gudovskikh A.S., Bolshakov A.D.Si nanowire-based Schottky sensors for selective sensing of NH3and HCl via impedance spectroscopy // ACS Appl. Nano Mater. 2023.V. 6. № 13.P. 11513–11523. https://doi.org/10.1021/ acsanm.3c01545
- Kondratiev V.M., Morozov I.A., Vyacheslavova E.A., Kirilenko D.A., Kuznetsov A., Kadinskaya S.A., Nalimova S.S., Moshnikov V.A., Gudovskikh A.S., Bolshakov A.D.Silicon nanowire-based room-temperature multi-environment ammonia detection // ACS Appl. Nano Mater. 2022.V. 5. № 7.P. 9940–9949. https://doi.org/10.1021/acsanm.2c02178
- Nalimova S.S., Kononova I.E., Moshnikov V.A., Dimitrov D.Tz., Kaneva N.V., Krasteva L.K., Syuleyman S.A., Bojinova A.S., Papazova K.I., Georgieva A.Ts.Investigation of the vapor-sensitive properties of zinc oxide layers by impedance spectroscopy // Bulg. Chem. Commun. 2017.V. 49. № 1.P.121–126.
- Balasubramani V., Sureshkumar S., Rao T.S., Sridhar T.M.Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations // ACS Omega. 2019. V. 4. № 6. P. 9976–9982. https://doi.org/10.1021/acsomega.9b00754
- Al-Hardan N.H., Abdullah M.J., Aziz A.A.Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films // Int. J. Hydrogen Energy. 2010. V. 35. P. 4428. https://doi.org/10.1016/j.ijhydene.2010.02.006
- Fedorov F.S., Varezhnikov A.S., Kiselev I., Kolesnichenko V.V., Burmistrov I.N., Sommer M., Fuchs D., Kübel C., Gorokhovsky A.V., Sysoev V.V.Potassium polytitanate gas-sensor study by impedance spectroscopy // Anal. Chim. Acta. 2015. V. 897. P.81–86. https://doi.org/10.1016/j.aca.2015.09.029
- Du J., Wu H., Wang X., Qi C., Mao W., Ren T., Qiao Q., Yang Z.Ternary MoS2/MoO3/C nanosheets as high-performance anode materials for lithium-ion batteries // J. Electron. Mater. 2018. V. 47. № 11. P. 6767–6773. https://doi.org/10.1007/s11664-018-6602-1
- Kundu M., Mondal D., Mondal I., Baral A., Halder P., Biswas S., Paul B.K., Bose N., Basu R., Das S.A rational preparation strategy of phase tuned MoO3nanostructures for high-performance all-solid asymmetric supercapacitor // J. Energy Chem. 2023. V. 87. P. 192–206. https://doi.org/10.1016/ j.jechem.2023.08.014
- Wang B.B., Zhong X.X., Ming B.M., Zhu M.K., Chen Y.A., Cvelbar U., Ostrikov K.Structure and photoluminescence properties of MoO3−x/graphene nanoflake hybrid nanomaterials formed via surface growth // Appl. Surf. Sci. 2019. V. 480. P. 1054–1062. https://doi.org/10.1016/j.apsusc.2019.02.183
- Shankar P., Rayappan J.B.B. Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique // J. Mater. Chem. C. 2017. V. 5. № 41. P. 10869–10880. https://doi.org/10.1039/C7TC03771F
- Chiang H., Bhan A.Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites // J. Catal. 2010. V. 271. № 2. P.251–261. https://doi.org/10.1016/ j.jcat.2010.01.021
- Piccini G., Alessio M., Sauer J.Ab initio study of methanol and ethanol adsorption on Brønsted sites in zeolite H-MFI // Phys. Chem. Chem. Phys. 2018. V. 20. № 30. P. 19964–19970. https://doi.org/10.1039/C8CP03632B
- Kumar R., Kulriya P.K., Mishra M., Singh F., Gupta G., Kumar M.Highly selective and reversible NO2gas sensor using vertically aligned MoS2flake networks // Nanotechnology. 2018. V. 29. № 46. P. 464001. https://doi.org/10.1088/1361-6528/aade20
- Li W., Zhang Y., Long X., Cao J., Xin X., Guan X., Peng J., Zheng X.Gas sensors based on mechanically exfoliated MoS2nanosheets for Room-Temperature NO2detection // Sensors. 2019. V. 19. № 9. P. 2123. https://doi.org/10.3390/s19092123
- Choi G.J., Mishra R.K., Gwag J.S.2D layered MoS2based gas sensor for indoor pollutant formaldehyde gas sensing applications // Mater. Lett. 2020. V. 264. P. 127385. https://doi.org/10.1016/j.matlet.2020.127385
- Sharma S., Kumar A., Singh N.,Kaur D. Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms // Sens. Actuators, B. 2018. V. 275. P.499–507. https://doi.org/10.1016/ j.snb.2018.08.046
Supplementary files
