Электрохимические характеристики MnO2/С-электродов в нейтральных водных электролитах

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Модификацию поверхности угольных электродов наночастицами диоксида марганца проводили методом анодного электрохимического осаждения. Структурные характеристики и элементный состав MnO2/С  изучены методами энергодисперсионного микроанализа, просвечивающей электронной микроскопии. Электрохимические характеристики электродов исследованы методами циклической вольтамперометрии, гальваностатического заряда-разряда и импедансной спектроскопии. Проведено сравнение удельной емкости электродов MnO2/С в 0,5 М растворах Li2SO4, Na2SO4 и K2SO4. Установлено, что большие значения удельной емкости полученных материалов реализуются в растворе сульфата натрия.

Full Text

Restricted Access

About the authors

В. В. Чернявина

Южный федеральный университет

Author for correspondence.
Email: vchernyavina@yandex.ru
Russian Federation, 344006, Ростов-на-Дону, ул. Б. Садовая, 105/42

А. Г. Бережная

Южный федеральный университет

Email: vchernyavina@yandex.ru
Russian Federation, 344006, Ростов-на-Дону, ул. Б. Садовая, 105/42

Я. А. Дышловая

Южный федеральный университет

Email: vchernyavina@yandex.ru
Russian Federation, 344006, Ростов-на-Дону, ул. Б. Садовая, 105/42

References

  1. Vellacheri R., Pillai V.K., Kurungot S. Hydrous RuO2–Carbon Nanofiber Electrodes with High Mass and Electrode-Specific Capacitance for Efficient Energy Storage // Nanoscale. 2012. № 4. P. 890–896. https://doi.org/10.1039/C2NR11479H
  2. Mao L., Zhang K., Chan H. S., Wu J. Nanostructured MnO2/Graphene Composites for Supercapacitor Electrodes: the Effect of Morphology, Crystallinity and Composition // J. Mater. Chem. 2012. V. 22. № 5. P. 1845–1851. https://doi.org/10.1039/C1JM14503G
  3. Meher S.K., Rao G.R. Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4 // J. Phys. Chem. C. 2011. V. 115. № 51. P. 25543–25556. https://doi.org/10.1021/jp209165v
  4. Qu Q.T., Zhu Y.S., Gao X.W., Wu Y.P. Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High Performance Anode Material for Supercapacitors // Adv. Energy Mater. 2012. V. 2. № 8. P. 950–955. https://doi.org/10.1002/aenm.201200088
  5. Tang W., Liu L.L., Tian S., Li L., Yue Y.B., Wu Y.P., Zhu K. Aqueous Supercapacitors of High Energy Density Based on MoO3 Nanoplates As Anode Material // Chem. Commun. 2011. V. 47. № 36. P. 10058–10060. https://doi.org/10.1039/C1CC13474D
  6. Naoi K., Morita M. Advanced Polymers as Active Materials and Electrolytes for Electrochemical Capacitors and Hybrid Capacitor Systems // The Electrochem. Soc. Interface. 2008. V. 17. P. 44–48. https://doi.org/10.1149/2.F06081IF
  7. Lee H. Y., Goodenough J. B. Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution // J. Solid State Chem. 1999. V. 148. № 1. P. 81–84. https://doi.org/10.1006/jssc.1999.8367
  8. Xu C., Kang F., Li B., Du H. Recent Progress on Manganese Dioxide Based Supercapacitors // J. Mater. Res. 2010. V. 25. P. 1421–1432. https://doi.org/10.1557/JMR.2010.0211
  9. Hou D., Tao H., Zhu X., Li M. Polydopamine and MnO2 Core-Shell Composites for High-Performance Supercapacitors // Appl. Surf. Sci. 2017. V. 419. P. 580–585. https://doi.org/10.1016/j.apsusc.2017.05.080
  10. Lang J.W., Yan X.B., Yuan X.Y., Yang J., Xue Q.J. Study on the Electrochemical Properties of Cubic Ordered Mesoporous Carbon for Supercapacitors // J. Power Sources. 2011. V. 196. P. 10472–10478. https://doi.org/10.1016/j.jpowsour.2011.08.017
  11. Xu C., Wei C., Li B., Kang F., Guan Z. Charge Storage Mechanism of Manganese Dioxide for Capacitor Application: Effect of the Mild Electrolytes Containing Alkaline and Alkaline-Earth Metal Cations // J. Power Sources. 2011. V. 196. P. 7854–7859. https://doi.org/10.1016/j.jpowsour.2011.04.052
  12. Kim I-T., Kouda N., Yoshimoto N., Morita M. Preparation and Electrochemical Analysis of Electrodeposited MnO2/C Composite for Advanced Capacitor Electrode // J. Power Sources. 2015. V. 298. P. 123–129. https://doi.org/10.1016/j.jpowsour.2015.08.046
  13. Чернявина В.В., Бережная А.Г. Удельная масса и энергетические свойства угольных электродов на основе активированного угля марки NORIT DLС SUPRA 50 // Электрохимия. 2018. Т. 54. № 8. С. 42–47. https://doi.org/10.1134/s0424857018110026
  14. Liu B., Cao Z., Yang Z., Qi W., He J., Pan P., Li H., Zhang P. Flexible Micro-Supercapacitors Fabricated from MnO2 Nanosheet/Graphene Composites with Black Phosphorus Additive // Prog. Nat. Sci. 2022. V. 32. № 1. P. 10–19. https://doi.org/10.1016/j.pnsc.2021.10.008
  15. Wang J., Yunus R., Li J., Li P., Zhang P., Kim J. In Situ Synthesis of Manganese Oxides on Polyester Fiber for Formaldehyde Decomposition at Room Temperature // Appl. Surf. Sci. 2015. V. 357. P. 787–94. https://doi.org/10.1016/j.apsusc.2015.09.109
  16. Devaraj S., Munichandraiah N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties // J. Phys. Chem. C. 2008. V. 112. № 11. P. 4406–4417. https://doi.org/10.1021/jp7108785
  17. Toupin M., Brousse T., B´elanger D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor // Chem. Mater. 2004. V. 16. № 16. P. 3184–3190. https://doi.org/10.1021/cm049649j
  18. Chen P., Adomkevicius A., Lu Y., Lin S., Tu Y., Hu C. The Ultrahigh-Rate Performance of Alkali Ion-Pre-Intercalated Manganese Oxides in Aqueous Li2SO4, Na2SO4, K2SO4 and MgSO4 Electrolytes // J. Electrochem. Soc. 2019. V.166. № 10. P. 1875–1883. https://doi.org/10.1149/2.0631910jes
  19. Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Сathode for Asymmetric Supercapacitors // J. Phys. Chem. C. 2009. V. 113. № 31. P. 14020–14027. https://doi.org/10.1021/jp8113094
  20. Gu J., Fan X., Liu X., Li S., Wang Z., Tang S. and Yuan D. Mesoporous Manganese Oxide with Large Specific Surface Area for High-Performance Asymmetric Supercapacitor with Enhanced Cycling Stability // Chem. Eng. J. 2017. V. 324. P. 35–42. https://doi.org/10.1016/j.cej.2017.05.014
  21. Shao J., Li X., Qu Q., Wu Y. Study on Different Power and Cycling Performance of Crystalline KxMnO2·nH2O as Cathode Material for Supercapacitors in Li2SO4, Na2SO4, and K2SO4 Aqueous Electrolytes // J. Power Sources. 2013. V. 223. P. 56–61. https://doi.org/10.1016/j.jpowsour.2012.09.046
  22. Xu C., Li B., Du H., Kang F., Zeng Y. Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations // J. Electrochem. Soc. 2009. V. 156. № 1. P. 73–78. https://doi.org/10.1149/1.3021013
  23. Devaraj S., Munichandraiah N.J. The Effect of Nonionic Surfactant Triton X-100 During Electrochemical Deposition of MnO2 on Its Capacitance Properties // J. Electrochem. Soc. 2007. V. 154. № 10. P. 901–909. https://doi.org/10.1149/1.2759618
  24. Reddy R.N., Reddy R.G. Sol–Gel MnO2 As an Electrode Material for Electrochemical Capacitors // J. Power Sources. 2003. V. 124. № 1. P. 330–337. https://doi.org/10.1016/S0378-7753(03)00600-1
  25. Xu C., Li B., Du H., Kang F., Zeng Y. Supercapacitive Studies on Amorphous MnO2 in Mild Solutions // J. Power Sources. 2008. V. 184. № 2. P. 691– 694. https://doi.org/10.1016/j.jpowsour.2008.04.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images and EDX spectra for C electrodes (a, b) and MnO2/C composite (c, d).

Download (53KB)
3. Fig. 2. SEM images of the MnO2/C material.

Download (15KB)
4. Fig. 3. Cyclic voltammetric curves taken at the carbon electrode and MnO2/C in 0.5 M Li2SO4, Na2SO4, and K2SO4 solutions at a sweep rate of 5 mV/s.

Download (3KB)
5. Fig. 4. Galvanostatic charge-discharge curves for the carbon and MnO2/C electrodes obtained at Iud = 0.4 A/g in 0.5 M solutions of Li2SO4, Na2SO4, and K2SO4.

Download (3KB)
6. Fig. 5. Nyquist plots obtained for MnO2/C electrodes at 50 mHz - 500 KHz in 1M solutions of Li2SO4, Na2SO4, and K2SO4.

Download (2KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».