Синтез, микроструктура и диэлектрические свойства модифицированной керамики на основе твердых растворов (K0.5Na0.5)NbO3–SrZrO3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методом твердофазного синтеза получены однофазные керамические образцы новых составов (1−x)(K0.5Na0.5)NbO3xSrZrO3 (x = 0–0.15), модифицированные добавкой 2 мас. % ZnO, и изучены их кристаллическая структура, микроструктура, диэлектрические и нелинейные оптические свойства. В модифицированных образцах установлено формирование фазы со структурой перовскита с псевдокубической элементарной ячейкой. Выявлено уменьшение среднего размера кристаллитов (областей когерентного рассеяния) от 91 до 54 нм. Сегнетоэлектрические фазовые переходы подтверждены методом диэлектрической спектроскопии. Выявлено понижение температуры фазовых переходов и ослабление нелинейных оптических свойств по мере увеличения содержания цирконата стронция в образцах.

Full Text

Restricted Access

About the authors

Г. М. Калева

Федеральный исследовательский центр химической физики им. Н. Н. Семенова Российской академии наук

Author for correspondence.
Email: galina_kaleva@mail.ru
Russian Federation, ул. Косыгина, 4, Москва, 119991

Е. Д. Политова

Федеральный исследовательский центр химической физики им. Н. Н. Семенова Российской академии наук

Email: galina_kaleva@mail.ru
Russian Federation, ул. Косыгина, 4, Москва, 119991

С. А. Иванов

Московский государственный университет им. М.В. Ломоносова

Email: galina_kaleva@mail.ru
Russian Federation, Ленинские горы, 1, Москва, 119991

А. В. Мосунов

Московский государственный университет им. М.В. Ломоносова

Email: galina_kaleva@mail.ru
Russian Federation, Ленинские горы, 1, Москва, 119991

С. Ю. Стефанович

Московский государственный университет им. М.В. Ломоносова

Email: galina_kaleva@mail.ru
Russian Federation, Ленинские горы, 1, Москва, 119991

Н. В. Садовская

Национальный исследовательский центр “Курчатовский институт”

Email: galina_kaleva@mail.ru
Russian Federation, Ленинский пр., 59, Москва, 119333

References

  1. Valant M. Electrocaloric Materials for Future Solid-State Rfrigeration Technologies // Progr. Mater. Sci. 2012. V. 57. P. 980–1009. https://doi.org/:10.1016/j.pmatsci.2012.02.001
  2. Bai Y., Han X., Ding K., Qiao L. Electrocaloric Refrigeration Cycles with Large Cooling Capacity in Barium Titanate Ceramics near Room Temperature // Energy Technol. 2017. V. 5. P. 703–707. https://doi.org/10.1002/ente.201600456
  3. Ozbolt M., Kitanovski A., Tusek J., Poredos A. Electrocaloric Refrigeration: Thermodynamics, State of the Art and Future Perspectives // Int. J. Refrig. 2014. V. 40. P. 174–188. https://doi.org/10.1016/j.ijrefrig.2013.11.007
  4. Lu S.-G., Zhang Q. Electrocaloric Materials for Solid-State Refrigeration // Adv. Mater. 2009. V. 21. P. 1983–1987. https://doi.org/10.1002/adma.200802902
  5. Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. Electrocaloric Effect in Lead-Free Aurivillius Relaxor Ferroelectric Ceramics // Acta Mater. 2017. V. 124. P. 120–126. https://doi.org/10.1016/j.actamat.2016.11.001
  6. Weyland F., Acosta M., Koruza J., Breckner P., Rödel J., Novak N. Criticality: Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics // Adv. Funct. Mater. 2016. V. 26. P. 7326–7333. https://doi.org/10.1002/adfm.201602368
  7. Mischenko A.S., Zhang Q., Scott J.F., Whatmore R.W., Mathur N.D. Giant Electrocaloric Effect in Thin-Film PbZr 0.95 Ti 0.05 O 3 // Science. 2006. V. 311. P. 1270–1271. https://doi.org/10.1126/science.1123811
  8. Suchaneck G., Gerlach G. Lead-Free Relaxor Ferroelectrics for Eelectrocaloric Cooling // Mater. Today: Proceed. 2016. V. 3. P. 622–631. https://doi.org/10.1016/j.matpr.2016.01.100
  9. Grünebohm A., Ma Y.B., Marathe M., Xu B.X., Albe K., Kalcher C., Meyer K.C., Shvartsman V.V., Lupascu D.C., Ederer C. Origins of the Inverse Electrocaloric Effect // Energy Technol. 2018. V. 6. P. 1491–1511. https://doi.org/10.1002/ente.201800166
  10. Samantaray K.S., Amin R., Rini E., Bhaumik I., Mekki A., Harrabi K., Sen S. Defect Dipole Induced Improved Electrocaloric Effect in Modified NBT-6BT Lead-Free Ceramics // J. Alloys Compd. 2022. V. 903. Р. 163837. https://doi.org/10.1016/j.jallcom.2022.163837
  11. Luo L., Jiang X., Zhang Y., Li K. Electrocaloric Effect and Pyroelectric Energy Harvesting of (0.94-x) Na 0.5 Bi 0.5 TiO 3 -0 .06BaTiO 3 -xSrTiO 3 Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803–2812. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
  12. Srikanth K., Vaish R. Enhanced Electrocaloric, Pyroelectric and Energy Storage Performance of BaCe x Ti 1-x O 3 Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927–3933. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
  13. Kimmel A., Gindele O., Duffy D., Cohen R. Giant Electrocaloric Effect at the Antiferroelectric-to-Ferroelectric Phase Boundary in Pb(Zr x Ti 1-х )O 3 // Appl. Phys. Lett. 2019. V. 115. Р. 023902. https://doi.org/10.1063/1.5096592
  14. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Eur. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
  15. Yang Z., Du H., Jin L. and Poelman D. High-Performance Lead-Free Bulk Ceramics for Electrical Energy Storage Applications: Design Strategies and Challenges // J. Mater. Chem. A. 2021. V. 9. P. 18026–18085. https://doi.org/10.1039/d1ta04504k
  16. Wu J. Perovskite Lead-Free Piezoelectric Ceramics // J. Appl. Phys. 2020. V. 127 Р. 190901. https://doi.org/10.1063/5.0006261
  17. Panda P.K. Review: Environmental Friendly Lead-Free Piezoelectric Materials // J. Mater. Sci. 2009. V. 44. P. 5049–5062. https://doi.org/10.1007/s10853-009-3643-0
  18. Rödel J., Jo W., Seifert T.P., Anton E.–M., Granzow T., Damjanovic D. Perspective of the Development of Lead-Free Piezoceramics // J. Am. Ceram. Soc. 2009. V. 92. P. 1153–1177. https://doi.org/10.1111/j.1551- 2916.2009.03061.x
  19. Bernard J., Bencan A., Rojac T., Holc J., Malic B., Kosec M. Low Temperature Sintering of (K 0.5 Na 0.5 )NbO 3 Ceramics // J. Am. Ceram. Soc. 2008. V. 91. P. 2409–2411. https://doi.org/10.1111/j.1551-2916.2008.02447.x
  20. Kumar R., Singh S. Enhanced Electrocaloric Effect in Lead-Free 0 .9(K 0.5 Na 0.5 )NbO 3 0 .1Sr(Sc 0.5 Nb 0.5 )O 3 Ferroelectric Nanocrystalline Ceramics // J. Alloys Compd. 2017. V. 723. P. 589–594. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
  21. Liu Z., Fan H., Lei S., Ren X., Long C. Duplex Structure in (K 0.5 Na 0.5 )NbO 3 SrZrO 3 Ceramics with Temperature-Stable Dielectric Properties // J. Eur. Ceram. Soc. 2017. V. 37. P. 115–123. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
  22. Kumar R., Singh S. Enhanced Electrocaloric Response and Energy-Storage Properties in Lead-Free (1−x) (K 0.5 Na 0.5 )NbO 3 xSrZrO 3 Nanocrystalline Ceramics // J. Alloys Compd. 2018. V. 764. P. 289–294. https://doi.org/10.1016/j.jallcom.2018.06.083
  23. Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Chichkov M.V., Panda P.K. Structure, Ferroelectric and Piezoelectric Properties of KNN-Based Perovskite Ceramics // Ferroelectrics. 2019. V. 538 P. 45–51. https://doi.org/10.1080/00150193.2019.1569984
  24. Kołodziejczak-Radzimska A. and Jesionowski T. Zinc Oxide—from Synthesis to Application: A Review // Materials. 2014. V. 7. P. 2833–2881. https://doi.org/10.3390/ma7042833
  25. Louër D., Weigel D., Louboutin R. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. I. Méthode Numérique de Déconvolution // Acta Crystallogr., Sect. A. 1969. V. 25. P. 335–338. https://doi.org/10.1107/s0567739469000556
  26. Louboutin R., Louër D. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. III. Sur la Recherche de la Solution Optimale Lors de la Déconvolution // Acta Crystallogr., Sect. A. 1972. V. 28. P. 396–400. https://doi.org/10.1107/S056773947200107X
  27. Le Bail A., Louër D. Smoothing and Validity of Crystallite-Size Distributions from X-ray Line-Profile Analysis // J. Appl. Crystallogr. 1978. V. 11. P. 50–55. https://doi.org/10.1107/S0021889878012662
  28. Zhurov V.V., Ivanov S.A. PROFIT Computer Program for Processing Powder Diffraction Data on an IBM PC with a Graphic User Interface // Crystallogr. Rep. 1997. V. 42. P. 202–206.
  29. Калева Г. М., Политова Е. Д., Иванов С. А., Мосунов А. В., Стефанович С.Ю., Садовская Н.В. Синтез, структура, диэлектрические и нелинейные оптические свойства керамики системы (K 0.5 Na 0.5 )NbO 3 BaZrO 3 // Неорган. материалы. 2023. Т. 59. № 2. С. 208–215. https://doi.org/10.31857/S0002337X23020082
  30. Kurtz S.K., Perry T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials // J. Appl. Phys. 1968. V. 39. № 8. P. 3798–3813. https://doi.org/10.1109/JQE.1968.1075108.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of (1-x)(K0.5Na0.5)NbO3–xSrZrO3 samples modified with ZnO, with x = 0.05 (1), 0.075 (2), 0.125 (3), 0.15 (4).

Download (29KB)
3. Fig. 2. Distribution curves of the CSR for the (1-x)(K0.5Na0.5)NbO3–xSrZrO3 samples modified with ZnO, with x = 0 (a), 0.075 (b), 0.125 (c), 0.15 (d); the calculated average crystallite size varies from 911 Å (a) to 723 Å (b), 554 Å (c) and 545 Å (d).

Download (47KB)
4. Fig. 3. Microstructure of (1− x)(K0.5Na0.5)NbO3–xSrZrO3 samples modified with ZnO, with x = 0 (a), 0.075 (b), 0.125 (c), and 0.15 (d).

Download (142KB)
5. Fig. 4. Temperature dependences of the permittivity ε(T), dielectric losses tanδ(T), and electrical conductivity logσ(1/T) of the (1−x)(K0.5Na0.5)NbO3–xSrZrO3 samples modified with ZnO, with x = 0.0 (a–c), 0.05 (d–f), 0.075 (g–i), 0.125 (k–m), measured at frequencies f = 1 (1), 10 (2), 100 (3), 300 kHz (4), 1 MHz (5).

Download (110KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».