Влияние кислотности среды осаждения на структуру и морфологию частиц порошков α-Al2O3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследовано влияние кислотности среды на фазовый состав и морфологию порошков оксида алюминия, синтезированных методом осаждения из раствора с использованием Al(NO3)3·9H2O и NH4HCO3. Показано, что для интервала рН 5–7 характерно формирование аморфного порошка-прекурсора, при рН 8–9 формируется кристаллическая фаза NH4AlCO3(OH)2. Отжиг порошков, полученных осаждением в кислой среде, приводит к формированию 100% фазы α-Al2O3, представленной агломерированными равноосными частицами размером ~100–200 нм. Отжиг порошков, синтезированных в нейтральной и щелочной средах, приводит к формированию дополнительных примесных фаз θ-Al2O3 и γ-Al2O3, характеризующихся равноосными частицами размером ~20–25 нм.

Full Text

Restricted Access

About the authors

Т. С. Поздова

Нижегородский государственный университет им. Н.И. Лобачевского

Author for correspondence.
Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022

Д. А. Пермин

Нижегородский государственный университет им. Н.И. Лобачевского

Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022

М. Д. Назмутдинов

Нижегородский государственный университет им. Н.И. Лобачевского

Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022

М. С. Болдин

Нижегородский государственный университет им. Н.И. Лобачевского

Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022

К. А. Рубцова

Нижегородский государственный университет им. Н.И. Лобачевского

Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022

Р. С. Ковылин

Нижегородский государственный университет им. Н.И. Лобачевского; Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук

Email: pozdova@unn.ru
Russian Federation, пр. Гагарина, 23, Нижний Новгород, 603022; ул. Тропинина, 49, Нижний Новгород, 603137

А. А. Москвичев

Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук

Email: pozdova@unn.ru
Russian Federation, ул. Ульянова, 46, Нижний Новгород, 603155

References

  1. Elasser C., Elasser T. Codoping and Grain-Boundary Cosegregation of Substitutional Cations in α- Al 2 O 3 : A Density-Functional-Theory Study // J. Am. Ceram. Soc. Rev. 2005. V. 88. № 1. P. 1–14. https://doi.org/10.1111/J.1551-2916.2004.00056.X
  2. Doremus R.H. Diffusion in Alumina // J. Appl. Phys. 2006. V. 100. P. 1–17. https://doi.org/10.1063/1.2393012
  3. Рахаман М.Н. Технология получения керамик; пер. с англ. Нижний Новгород: ННГУ им. Н.И. Лобачевского, 2022. 741 с.
  4. Ruys A. Alumina Ceramics: Biomedical and Clinical Applications. Woodhead Publishing Series in Biomaterials. 2018. 580 p. https://doi.org/10.1016/B978-0-08-102442-3.09987-5
  5. Sarin V.K., Mari D., Llanes L., Nebel C.E. Comprehensive Hard Materials. Ceramics. V. 2. Elsever, 2014. 1774 p. https://doi.org/10.1016/B978-0-08-096527-7.00020-9
  6. Krell A., Klaffke D. Effect of Grain Size and Humidity on Fretting Wear in Fine-Grained Alumina, Al 2 O 3 /TiC, and Zirconia // J. Am. Ceram. Soc. 1996. V. 79. № 5. P. 1139–1146. https://doi.org/10.1002/chin.199640002
  7. Гаршин А.П., Гропянов В.М., Зайцев Г.П., Семенов С.С. Керамика для машиностроения. М.: Научтехлитиздат, 2003. 384 с.
  8. Krell A., Blank P. The Influence of Shaping Method on the Grain Size Dependence of Strength in Dense Submicrometre Alumina // J. Eur. Ceram. Soc. 1996. V. 16. P. 1189–1200. https://doi.org/10.1016/0955-2219(96)00044-1
  9. Krell A. Improved Hardness and Hierarchic Influences on Wear in Submicron Sintered Alumina // Mater. Sci. Eng., A. 1996. V. 209. P. 156–163. https://doi.org/10.1016/0921-5093(95)10155-1
  10. Wu Z., Shen Y., Dong Y., Jiang J. Study on the Morphology of α- Al 2 O 3 Precursor Prepared by Precipitation Method // J. Alloys Compd. 2009. V. 467. P. 600–604. https://doi.org/10.1016/j.jallcom.2007.12.092
  11. Sun X., Li J., Zhang F., Qin X., Xiu Zh., Ru H. Synthesis of Nanocrystalline α- Al 2 O 3 Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide // J. Am. Ceram. Soc. 2003. V. 86. № 8. P. 1321–25. https://doi.org/10.1111/j.1151-2916.2003.tb03469.x
  12. Wang L. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method // MATEC Web of Conferences. 2017. V. 109. Р. 02002. https://doi.org/10.1051/matecconf/201710902002
  13. Kannan T. S., Panda P. K., Jaleel V. A. Preparation of Pure Boehmite, α- Al 2 O 3 and Their Mixtures by Hydrothermal Oxidation of Aluminum Metal // J. Mater. Sci. Lett. 1997. V. 16. P. 830–4. https://doi.org/10.1023/A:1018538727137
  14. Suchanek W.L. Hydrothermal Synthesis of Alpha Alumina (α‐ Al 2 O 3 ) Powders: Study of the Processing Variables and Growth Mechanisms // J. Am. Ceram. Soc. 2010. V. 93. P. 399–412. https://doi.org/ 10.1111/j.1551-2916.2009.03399.x
  15. Альмяшева О.В., Корыткова Э.Н., Маслов А.В. Получение нанокристаллов оксида алюминия в гидротермальных условиях // Неорган. материалы. 2005. T. 41. № 5. С. 540‒547.
  16. Farahmandjou M., Golabiyan N. Synthesis and Characterization of Alumina ( Al 2 O 3 ) Nanoparticles Prepared by Simple Sol-Gel Method // Mater. Eng. Res. 2019. V. 1. № 2. P. 40–44. https://doi.org/10.33971/bjes.24.2.1
  17. Sharma P.K., Varadan V.V., Varadan V.K. A Critical Role of pH in the Colloidal Synthesis and Phase Transformation of Nano Size α- Al 2 O 3 with High Surface Area // J. Eur. Ceram. Soc. 2003. V. 23. № 5. P. 659–666. https://doi.org/10.1016/S0955-2219(02)00191-7
  18. Fatemeh M., Hasmaliza M., Luqman Ch. Preparation of Nano-Scale α- Al 2 O 3 Powder by the Sol-Gel Method // Ceramics - Silikaty. 2011. V. 55. № 4. P. 378–383.
  19. Turova N.Y., Turevskaya E.P., Kessler V.G, Yanovskaya M.I. The Chemistry of Metal Alkoxides. N. Y.: Springer Science & Business Media, 2002. 568 p. https://doi.org/10.1007/b113856
  20. Hu X.F., Liu Y.Q., Tang Z., Li G.C. Fabrication of High-Surface-Area γ-Alumina by Thermal Decomposition of AACH Precursor Using Low-Temperature Solid-State Reaction // Mater. Res. Bull. 2012. V. 47. № 12.P. 4271–4277. https://doi.org/10.1016/j.materresbull. 2012.09.019
  21. Huiying G., Zhiyong L., Peng Z. Green Synthesis of Nanocrystalline α- Al 2 O 3 Powders by Both Wet-Chemical and Mechanochemical Methods // Mod. Phys. Lett. B. 2018. V. 32. № 8. P. 1850109. https://doi.org/10.1142/S0217984918501099
  22. Ma C.-C., Zhou X.-X., Xu X., Zhu T. Synthesis and Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH) // Mater. Chem. Phys. 2001. V. 72. P. 374–379. https://doi.org/10.1016/S0254-0584(01)00313-3
  23. Mehdi H.D., Kadem W. M., Jasim A.N. The Effect of pH on the Structural Properties of Crystalline Alpha Alumina Powders Synthesized by Co-Precipitation Method // IJNeaM. 2020. V. 13. № 2. P. 351–360. https://doi.org/10.1016/j.spmi.2015.01.044
  24. Grishina E.P., Kudryakova N.O., Ramenskaya L.M. Characterization of the Properties of Thin Al 2 O 3 Films Formed on Structural Steel by the Sol-Gel Method // Conden. Matter Interphases. 2020. V. 22. № 1. P. 39–47. https://doi.org/10.17308/kcmf.2020.22/2527
  25. Alves A.K., Berutti F. A., Bergmann C. P. The Effects of pH on the Preparation of Alumina by Sol-Gel Process // Part. Sci. Technol. 2005. V. 23. P. 351–360. https://doi.org/10.1080/02726350500212913
  26. Scholz G., Stosser R., Klein J. Local structural orders in nanostructured Al2O3 prepared by high-energy ball milling // J. Phys.: Condens. Matter. 2002. V. 14. P. 2101–2117. https://doi.org/10.1016/S0022-3093(01)00541-5
  27. Takeo I., Shuzo K. Crystal Structure of NH 3 -dawsonite // J. Ceram. Soc. Jpn. 1978. V. 86. № 999. P. 509–512. https://doi.org/10.2109/jcersj1950.86.999_509
  28. Morinaga K., Torikai T., Nakagawa K., Fujino S. Fabrication of Fine α-Alumina Powders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH) // Acta Mater. 2000. V. 48. P. 4735–4741 https://doi.org/10.1016/S1359-6454 (00)00265-2
  29. Zhu Zh., Sun H., Liu H., Yang D. PEG-directed hydrothermal synthesis of alumina nanorods with mesoporous structure via AACH nanorod precursors // J. Mater. Sci. 2010. V. 45. № 1. P. 46–50. https://doi.org/10.1007/s10853-009-3886-9
  30. Mirzajany R., Alizadeh M., Rahimipour M.R., Saremi M. Seed-Assisted Hydrothermally Synthesized AACH as the Alumina Precursors // Mater. Chem. Phys. 2019. V. 221. P. 188–196. https://doi.org/10.1016/j.matchemphys.2018.08.083

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of aluminum oxide precursor samples A5–A9 obtained by precipitation at different pH values.

Download (16KB)
3. Fig. 2. Diffraction patterns of aluminum oxide samples A5-1150–A9-1150.

Download (19KB)
4. Fig. 3. TG/DSC curves of AACH powders: 1 – TG, 2 – DSC; a – A5, b – A6, c – A7, d – A8, d – A9.

Download (55KB)
5. Fig. 4. SEM images of precursor powders and products of their heat treatment at t = 1150˚C

Download (45KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».