Синтез ZnGa2Se4 взаимодействием GaI3 и ZnI2 с селеном
- Авторы: Вельмужов А.П.1, Тюрина Е.А.1, Суханов М.В.1, Сучков А.И.1
-
Учреждения:
- Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук
- Выпуск: Том 60, № 6 (2024)
- Страницы: 681-688
- Раздел: Статьи
- URL: https://journals.rcsi.science/0002-337X/article/view/279316
- DOI: https://doi.org/10.31857/S0002337X24060042
- EDN: https://elibrary.ru/MSTCRA
- ID: 279316
Цитировать
Аннотация
Проведено термодинамическое моделирование систем GaI3–Se и ZnI2–Se методом констант равновесия в температурном интервале 200–500°С. Показано, что равновесная степень превращения йодидов в Ga2Se3 и ZnSe составляет 21 и 0.7٪ соответственно. Основным компонентом паровой фазы в обеих системах является молекулярный йод. Разработан способ получения Ga2Se3, ZnSe, ZnGa2Se4 взаимодействием GaI3 и ZnI2 с селеном в вакуумированном кварцевом реакторе с двумя температурными зонами. Селективное выведение йода из реакционного расплава позволило достичь практического выхода селенидов на уровне 86–90٪ при температуре 450°С. Остаточное содержание йода в полученных соединениях составило 0.2–1 ат.%.
Ключевые слова
Полный текст

Об авторах
А. П. Вельмужов
Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук
Автор, ответственный за переписку.
Email: velmuzhov.ichps@mail.ru
Россия, ГСП-75, ул. Тропинина, 49, Нижний Новгород
Е. А. Тюрина
Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук
Email: velmuzhov.ichps@mail.ru
Россия, ГСП-75, ул. Тропинина, 49, Нижний Новгород
М. В. Суханов
Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук
Email: velmuzhov.ichps@mail.ru
Россия, ГСП-75, ул. Тропинина, 49, Нижний Новгород
А. И. Сучков
Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук
Email: velmuzhov.ichps@mail.ru
Россия, ГСП-75, ул. Тропинина, 49, Нижний Новгород
Список литературы
- Shay J. L., Wernick J. H. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. N.Y: Pergamon, 1975. 244 p. https://doi.org/10.1016/C2013-0-02602-3
- Георгобиани А.Н., Радауцан С.И., Тигиняну И.М. Широкозонные полупроводники AIIB III 2 C VI 4: оптические и фотоэлектрические свойства и перспективы применения (Обзор) // Физика и техника полупроводников. 1985. Т. 19. Вып. 2. С. 193–212.
- Isaenko L. I., Yelisseyev A. P. Recent Studies of Nonlinear Chalcogenide Crystals for the Mid-IR // Semicond. Sci. Technol. 2016. V. 31. P. 123001. https://doi.org/10.1088/0268-1242/31/12/123001
- Tabouret V., Viana B., Petit J. , a Nonlinear Material with Wide Mid Infrared Transparency and Good Thermomechanical Properties // Opt. Mater.: X. 2019. V. 1. P. 100007. https://doi.org/10.1016/j.omx.2019.100007
- Georgobiani A.N., Tagiev B.G., Guseinov G.G., Kerimova T.G., Tagiev O.B., Asadullaeva S.G. Structure and Photoluminescence of : // Inorg. Mater. 2010. V. 46. № 5. P. 456–459. https://doi.org/10.1134/S0020168510050031
- Kim Y.-G., Lee C. Optical Absorption of Vanadium Doped Single Crystals // J. Appl. Phys. 1998. V. 83. № 12. P. 8068–8070. https://doi.org/10.1063/1.367902
- Kim W., Jin M., Hyeon S. Optical Absorption of : Single Crystals // Solid State Commun. 1990. V. 74. № 2. P. 123–125. https://doi.org/10.1016/0038-1098(90)90618-l
- Parasyuk O.V., Olekseyuk I.D., Mazurets I.I., Piskach L.V. Phase Equilibria in the Quasi-ternary ZnSe – – System // J. Alloys Compd. 2004. V. 379. P. 143–147. https://doi.org/10.1002/chin.200448020
- Lin C., Rüssel C., Dai S. Chalcogenide Glass-Ceramics: Functional Design and Crystallization Mechanism // Progr. Mater. Sci. 2018. V. 93. P. 1–44. https://doi.org/10.1016/j.pmatsci.2017.11.001
- Calvez L. Transparent Chalcogenide Glass-ceramics // Adam J.-L., Zhang X. Chalcogenide Glasses. Preparation, Properties and Applications. Woodhead, 2014. P. 310–346
- Kobayashi T., Osaka J. Gallium Arsenide Growth by Synthesis, Solute Diffusion Method // J. Cryst. Growth. 1984. V. 67. P. 319–323. https://doi.org/10.1016/0022-0248(84)90191-X
- Девятых Г.Г., Чурбанов М.Ф. Высокочистые халькогены. Н. Новгород: ННГУ, 1997. 244 с.
- Velmuzhov A.P., Sukhanov M.V., Churbanov M.F., Kotereva T.V., Shabarova L.V., Kirillov Yu.P. Behavior of Hydroxyl Groups in Quartz Glass during Heat Treatment in the Range 750–950°C // Inorg. Mater. 2018. V. 54. № 9. P. 925–930. https://doi.org/10.1134/S0020168518090169
- Norton F.J. Permeation of Gaseous Oxygen through Vitreous Silica // Nature. 1961. V. 191. 701 p. https://doi.org/10.1038/191701a0
- Shelby J.E. Reaction of Hydrogen with Hydroxyl-free Vitreous Silica // J. Appl. Phys. 1980. V. 51. № 5. P. 25889–2593. https://doi.org/10.1063/1.327986
- He Y., Wang X., Nie Q., Xu Y., Wang G., Xu T., Dai S. Optical Properties of Ge – Te – Ga Doping Al and AlCl3 Far Infrared Transmitting Chalcogenide Glasses // Infrared Phys. Technol. 2013. V. 58. P. 1–4. https://doi.org/10.1016/j.infrared.2012.12.038
- Snopatin G.E., Shiryaev V.S., Plotnichenko V.G., Dianov E.M., Churbanov M.F. High-Purity Chalcogenide Glasses for Fiber Optics // Inorg. Mater. 2009. V. 45. № 13. P. 1439–1460. https://doi.org/10.1134/S0020168509130019
- Ketkova L.A., Churbanov M.F. Heterophase Inclusions as a Source of Non-selective Optical Losses in Highpurity Chalcogenide and Tellurite Glasses for Fiber Optics // J. Non-Cryst. Solids. 2017. V. 480. P. 18–22. https://doi.org/10.1016/j.jnoncrysol.2017.09.018
- Velmuzhov A.P., Sukhanov M.V., Suchkov A.I., Churbanov M.F., Tyurina E.A. Preparation of by Reacting and with Sulfur // Inorg. Mater. 2016. V. 52. № 7. P. 650–654. https://doi.org/10.1134/S0020168516070141
- Barin I. Thermochemical Data of Pure Substances. N.Y. 1995. 1885 p.
- Binnewies M. Thermochemical Data of Elements and Compounds. Second revised. Weinheim: Wiley, 2002. https://doi.org/10.1002/9783527618347.fmatter
- Velmuzhov A.P., Sukhanov M.V., Zernova N.S., Shiryaev V.S., Kotereva T.V., Ketkova L.A., Evdokimov I.I., Kurganova A.E. Preparation of Glasses with Low Hydrogen and Oxygen Impurities Content for Middle IR Fiber Optics // J. Non-Cryst. Solids. 2019. V. 521. № 4. P. 119505. https://doi.org/10.1016/j.jnoncrysol.2019.119505
- PCPDFWIN – a Windows Retrieval/Display Program for accessing the ICDD PDF-2 database, JSPDS – International Center for Diffraction Data. 1998.
- Brian H. Toby. R factors in Rietveld Analysis: How Good Is Good Enough? // Powder Diffraction. 2006. V. 21. № 1. P. 67–70. https://doi.org/10.1154/1.2179804
- Шефер Г. Химические транспортные реакции (транспорт неорганических веществ через газовую фазу и его применение). М.: Мир, 1964. 194 с.
- Li H., Gu Z., Zhang H., Li W. Thermodynamic Analysis and Growth of ZnSe Single Crystals in Zn – Se – I2 System // J. Cryst. Growth. 2015. V. 415. P. 158–165. https://doi.org/10.1016/j.jcrysgro.2014.09.002
- Ho C.-H. Defect Semiconductors: The Study of Direct Band Edge and Optical Properties // ACS Omega. 2020. V. 5. № 29. P. 18527–18534. https://doi.org/10.1021/acsomega.0c02623
- Suzuki H., Mori R. Phase Study on Binary System Ga – Se // Jpn. J. Appl. Phys. 1974. V. 13. № 3. 417 p. https://doi.org/10.1143/JJAP.13.417
- Singh H.P., Dayal B. X-Ray Determination of the Thermal Expansion of Zinc Selenide // Phys. Status Solidi. 1967. V. 23. № 1. P. 93–95. https://doi.org/10.1002/pssb.19670230166
- McMurdie H.F., Morris M.C., Evans El.H., Paretzkin B., Wong-Ng W., Zhang Y., Hubbard C.R. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship // Powder Diffraction. 1986. V. 1. № 4. P. 334–345. https://doi.org/10.1017/S0885715600012045
- Yeh C.-Y., Lu Z.W., Froyen S., Zunger A. Zinc-Blende–Wurtzite Polytypism in Semiconductors // Phys. Rev. 1992. V. 46. Р. 10086. https://doi.org/10.1103/PhysRevB.46.10086
- Morocoima M., Quintero M., Guerrero E., Tovar R., Conflant P. Temperature Variation of Lattice Parameters and Thermal Expansion Coefficients of the Compound // J. Phys. Chem. 1997. V. 58. № 3. P. 503–547. https://doi.org/10.1016/S0022-3697(96)00048-0
- Errandonea D., Kumar R.S., Manjón F.J., Ursaki V.V., Tiginyanu I.M. High-pressure X-ray Diffraction Study on the Structure and Phase Transitions of the Defect-stannite and Defect-chalcopyrite // J. Appl. Phys. 2008. V. 104. Р. 063524. https://doi.org/10.1063/1.2981089
- Willis J.R., Bitllough R., Stoneham A.M. The Effect of Dislocation Loops on the Lattice Parameter, Determined by X-ray Diffraction // Philos. Mag. A. 1983. V. 48. № 1. P. 95–107. https://doi.org/10.1080/01418618308234889
- Chen N., Wang Y., He H., Lin L. Effects of Point Defects on Lattice Parameters of Semiconductors // Phys. Rev. B. 1996. V. 54. Р. 8516. https://doi.org/10.1103/PhysRevB.54.8516
- Rohloff M., Cosgun S., Massué C., Lunkenbein T., Senyshyn A., Lerch M., Fischer A., Behrens M. The Role of Synthesis Conditions for Structural Defects and Lattice Strain in β-TaON and Their Effect on Photo- and Photoelectrocatalysis // Z. Naturforsch. B. 2019. V. 74. № 1. P. 71–83. https://doi.org/10.1515/znb-2018-0171
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Inter Atomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767. https://doi.org/10.1107/S0567739476001551
- Tantardini C., Oganov A.R. Thermochemical Electronegativities of the Elements // Nat. Commun. 2021. V. 12. Р. 2087. https://doi.org/10.1038/s41467-021-22429-0
- Cochran C.N., Foster L.M. Vapor Pressure of Gallium, Stability of Gallium Suboxide Vapor, and Equilibria of Some Reactions Producing Gallium Suboxide Vapor // J. Electrochem. Soc. 1962. V. 109. P. 144–148. https://doi.org/10.1149/1.2425347
- Handbook of Preparative Inorganic Chemistry. Edited by G. Brauer. N.Y.: Academic, 1963. 1859 p.
Дополнительные файлы
