Ионно-плазменное модифицирование углеродных наноматериалов для электрохимических приложений
- Authors: Корусенко П.М.1,2, Белецкий Е.В.1, Левин О.В.1, Харисова К.А.1, Лукьянов Д.А.1, Верещагин А.А.1, Алексеева Е.В.1
-
Affiliations:
- Санкт-Петербургский государственный университет
- Омский государственный технический университет
- Issue: Vol 60, No 4 (2024)
- Pages: 409-430
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/274503
- DOI: https://doi.org/10.31857/S0002337X24040017
- EDN: https://elibrary.ru/NAVYUD
- ID: 274503
Cite item
Abstract
Для массового практического внедрения 0D-, 1D- и 2D-углеродных наноматериалов, таких как фуллерены, углеродные нанотрубки и нановолокна, а также графен, требуется разработка методик направленного модифицирования поверхности для придания углеродным наноматериалам особых свойств, что является ключевой научной и технологической задачей. В настоящем обзоре обобщены различные подходы к получению углеродных наноматериалов, ковалентно модифицированных анионными группами с использованием ионно-плазменных технологий, а также рассмотрены области применения таких материалов в электрокатализе и химических источниках тока.
Full Text

About the authors
П. М. Корусенко
Санкт-Петербургский государственный университет; Омский государственный технический университет
Author for correspondence.
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9; 644050 Омск, пр. Мира, 11
Е. В. Белецкий
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
О. В. Левин
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
К. А. Харисова
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
Д. А. Лукьянов
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
А. А. Верещагин
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
Е. В. Алексеева
Санкт-Петербургский государственный университет
Email: korusenko_petr@mail.ru
Russian Federation, 199034 Санкт-Петербург, Университетская наб., 7–9
References
- Радушкевич Л.В., Лукьянович В.М. Структура углерода, образующегося при термическом разложении окиси углерода на железном контакте // Журн. физ. химии. 1952. Т. 26. Вып. 1. С. 88–95.
- Gajanan K., Tijare S.N. Applications of Nanomaterials // Mater Today Proc. 2018. V. 5. № 1. P. 1093–1096. https://doi.org/10.1016/j.matpr.2017.11.187
- Lines M.G. Nanomaterials for Practical Functional Uses // J. Alloys Compd. 2008. V. 449. № 1–2. P. 242–245. https://doi.org/10.1016/j.jallcom.2006.02.082
- Buzea C., Pacheco I.I., Robbie K. Nanomaterials and Nanoparticles: Sources and Toxicity // Biointerphases. 2007. V. 2. № 4. P. MR17–MR71. https://doi.org/10.1116/1.2815690
- Roduner E. Size Matters: Why Nanomaterials Are Different // Chem Soc Rev. 2006. V. 35. № 7. P. 583. https://doi.org/10.1039/b502142c
- Ashraf M.A., Peng W., Zare Y., Rhee K.Y. Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites // Nanoscale Res Lett. 2018. V. 13. № 1. P. 214. https://doi.org/10.1186/s11671-018-2624-0
- Yu W., Sisi L., Haiyan Y., Jie L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review // RSC Adv. 2020. V. 10. № 26. P. 15328–15345. https://doi.org/10.1039/D0RA01068E
- Nordholm S., Bacskay G.B. The Basics of Covalent Bonding in Terms of Energy and Dynamics // Molecules. 2020. V. 25. № 11. P. 2667. https://doi.org/10.3390/molecules25112667
- Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications // Nanomaterials. 2021. V. 11. № 4. P. 967. https://doi.org/10.3390/nano11040967
- Mohammadi O., Golestanzadeh M., Abdouss M. Recent Advances in Organic Reactions Catalyzed by Graphene Oxide and Sulfonated Graphene as Heterogeneous Nanocatalysts: A Review // New J. Chem. 2017. V. 41. № 20. P. 11471–11497. https://doi.org/10.1039/C7NJ02515G
- Kusrini E., Oktavianto F., Usman, A., Mawarni D.P., Alhamid M.I. Synthesis, Characterization, and Performance of Graphene Oxide and Phosphorylated Graphene Oxide as Additive in Water-Based Drilling Fluids // Appl. Surf. Sci. 2020. V. 506. P. 145005. https://doi.org/10.1016/j.apsusc.2019.145005
- Joudeh N., Linke D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists // J. Nanobiotechnology. 2022. V. 20. № 1. P. 262. https://doi.org/10.1186/s12951-022-01477-8
- Zailan Z., Tahir M., Jusoh M., Zakaria Z.Y. A Review of Sulfonic Group Bearing Porous Carbon Catalyst for Biodiesel Production // Renew Energy. 2021. V. 175. P. 430–452. https://doi.org/10.1016/j.renene.2021.05.030
- Chong C.C., Cheng Y.W., Lam M.K., Setiabudi H.D., Vo D.-V.N. State‐of‐the‐Art of the Synthesis and Applications of Sulfonated Carbon‐Based Catalysts for Biodiesel Production: A Review // Energy Technol. 2021. V. 9. № 9. P. 2100303. https://doi.org/10.1002/ente.202100303
- Fonseca J.M., Spessato L., Cazetta A.L., da Silva C., de C. Almeida V. Sulfonated Carbon: Synthesis, Properties and Production of Biodiesel // Chem. Eng.Process. – Proc. Intensification. 2022. V. 170. P. 108668. https://doi.org/10.1016/j.cep.2021.108668
- Konwar L.J., Mäki-Arvela P., Mikkola J.-P. SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis // Chem Rev. 2019. V. 119. № 22. P. 11576–11630. https://doi.org/10.1021/acs.chemrev.9b00199
- Shuit S.H., Yee K.F., Lee K.T., Subhash B., Tan S.H. Evolution Towards the Utilisation of Functionalised Carbon Nanotubes as a New Generation Catalyst Support in Biodiesel Production: An Overview // RSC Adv. 2013. V. 3. № 24. P. 9070. https://doi.org/10.1039/c3ra22945a
- Pan H., Xia Q., Wang Y., Shen Z., Huang H., Ge Z., Li X., He J., Wang X., Li L., Wang Y. Recent Advances in Biodiesel Production Using Functional Carbon Materials as Acid/Base Catalysts // Fuel Process. Technol. 2022. V. 237. P. 107421. https://doi.org/10.1016/j.fuproc.2022.107421
- Dhawane S.H., Kumar T., Halder G. Recent Advancement and Prospective of Heterogeneous Carbonaceous Catalysts in Chemical and Enzymatic Transformation of Biodiesel // Energy Convers Manag. 2018. V. 167. P. 176–202. https://doi.org/10.1016/j.enconman.2018.04.073
- Tang Z.-E., Lim S., Pang Y.-L., Ong H.-C., Lee K.-T. Synthesis of Biomass as Heterogeneous Catalyst for Application in Biodiesel Production: State of the Art and Fundamental Review // Renewable Sustainable Energy Rev. 2018. V. 92. P. 235–253. https://doi.org/10.1016/j.rser.2018.04.056
- Lam E., Luong J.H.T. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals // ACS Catal. 2014. V. 4. № 10. P. 3393–3410. https://doi.org/10.1021/cs5008393
- Harris P.J.F. Fullerene Polymers: A Brief Review // C (Basel). 2020. V. 6. № 4. P. 71. https://doi.org/10.3390/c6040071
- Coro J., Suárez M., Silva L.S.R., Eguiluz K.I.B., Salazar-Banda G.R. Fullerene Applications in Fuel Cells: A Review // Int. J. Hydrogen Energy. 2016. V. 41. № 40. P. 17944–17959. https://doi.org/10.1016/j.ijhydene.2016.08.043
- Rathinavel S., Priyadharshini K., Panda D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application // Mater. Sci. Eng: B. 2021. V. 268. P. 115095. https://doi.org/10.1016/j.mseb.2021.115095
- Anzar N., Hasan R., Tyagi M., Yadav N., Narang J. Carbon nanotube - A review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science // Sensors International. 2020. V. 1. P. 100003. https://doi.org/10.1016/j.sintl.2020.100003
- Zaytseva O., Neumann G. Carbon Nanomaterials: Production, Impact on Plant Development, Agricultural and Environmental Applications // Chem. Biol. Technol. Agriculture. 2016. V. 3. № 1. P. 17. https://doi.org/10.1186/s40538-016-0070-8
- Paras, Yadav, K., Kumar P., Teja D.R., Chakraborty S., Chakraborty M., Mohapatra S.S., Sahoo A., Chou M.M.C., Liang C.-T., Hang D.-R. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications // Nanomaterials. 2022. V. 13. № 1. P. 160. https://doi.org/10.3390/nano13010160
- Xu Q., Li W., Ding L., Yang W., Xiao H., Ong W.-J. Function-Driven Engineering of 1D Carbon Nanotubes and 0D Carbon Dots: Mechanism, Properties and Applications // Nanoscale. 2019. V. 11. № 4. P. 1475–1504. https://doi.org/10.1039/C8NR08738E
- Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films // Science. 1979. 2004. V. 306. № 5696. P. 666–669. https://doi.org/10.1126/science.1102896
- Sarin V.K., Mari D., Llanes L. Comprehensive Hard Materials. L.: Newnes, 2014.
- Ye W., Zhou Q., Shi Y., Xie M., Chen B., Wang H., Liu W. Robust Wear Performance of Graphene-Reinforced High Entropy Alloy Composites // Carbon. 2024. V. 224. P. 119040. https://doi.org/10.1016/j.carbon.2024.119040
- Kurapova O.Yu., Smirnov I.V., Solovieva E.N., Konakov Y.V., Glukharev A.G., Konakov V.G. Tensile Properties, Hardness and Phase Formation of the Nickel Aluminides Based Composites Doped with Reduced Graphene Oxide (Al-Ni-rGO) // J. Alloys Compd. 2022. V. 928. P. 166912. https://doi.org/10.1016/j.jallcom.2022.166912
- Petrus M., Wozniak J., Cygan T., Kostecki M., Cygan S., Jaworska L., Teklińska D., Olszyna A. Comprehensive Study on Graphene-Based Reinforcements in Al2O3–ZrO2 and Al2O3–Ti(C,N) Systems and Their Effect on Mechanical and Tribological Properties // Ceram Int. 2019. V. 45. № 17. P. 21742–21750. https://doi.org/10.1016/j.ceramint.2019.07.175
- Mbayachi V.B., Ndayiragije E., Sammani T., Taj S., Mbuta E.R., ullah khan A. Graphene Synthesis, Characterization and Its Applications: A Review // Results Chem. 2021. V. 3. P. 100163. https://doi.org/10.1016/j.rechem.2021.100163
- Acik M., Chabal Y.J. Nature of Graphene Edges: A Review // Jpn. J. Appl. Phys. 2011. V. 50. № 7R. P. 070101. https://doi.org/10.1143/JJAP.50.070101
- Mahgoub H.A. Nanoparticles Used for Extraction of Polycyclic Aromatic Hydrocarbons // J. Chem. 2019. V. 2019. P. 1–20. https://doi.org/10.1155/2019/4816849
- Yan J.-A., Chou M.Y. Oxidation Functional Groups on Graphene: Structural and Electronic Properties // Phys. Rev. B. 2010. V. 82. № 12. P. 125403. https://doi.org/10.1103/PhysRevB.82.125403
- Jia X., Campos-Delgado J., Terrones M., Meunier V., Dresselhaus M.S. Graphene Edges: A Review of Their Fabrication and Characterization // Nanoscale. 2011. V. 3. № 1. P. 86–95. https://doi.org/10.1039/C0NR00600A
- Vacchi I.A., Ménard-Moyon C., Bianco A. Chemical Functionalization of Graphene Family Members // Phys. Sci. Rev. 2017. V. 2. № 1. P. 20160103. https://doi.org/10.1515/psr-2016-0103
- Collins P.G. Defects and Disorder in Carbon Nanotubes. Oxford: Oxford Univ. Press, 2010.
- Moosa A.A., Abed M.S. Graphene Preparation and Graphite Exfoliation // Turk. J. Chem. 2021. V. 45. № 3. P. 493–519. https://doi.org/10.3906/kim-2101-19
- Zhu Y., Ji H., Cheng H.-M., Ruoff R.S. Mass Production and Industrial Applications of Graphene Materials // Natl. Sci. Rev. 2018. V. 5. № 1. P. 90–101. https://doi.org/10.1093/nsr/nwx055
- Lu X., Chen Z. Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (
https://doi.org/10.1021/cr030093d - Charoenpakdee J., Suntijitrungruang O., Boonchui S. Chirality Effects on an Electron Transport in Single-Walled Carbon Nanotube // Sci. Rep. 2020. V. 10. № 1. P. 18949. https://doi.org/10.1038/s41598-020-76047-9
- Shuba M.V., Yuko D., Kuzhir P.P., Maksimenko S.A., Ksenevich V.K., Lim S.-H., Kim T.-H., Choi S.-M. Electromagnetic and Optical Responses of a Composite Material Comprising Individual Single-Walled Carbon-Nanotubes with a Polymer Coating // Sci. Rep. 2020. V. 10. № 1. P. 9361. https://doi.org/10.1038/s41598-020-66247-8
- Liberman L., Jamali V., Pasquali M., Talmon Y. Effect of Carbon Nanotube Diameter and Stiffness on Their Phase Behavior in Crowded Solutions // Langmuir. 2019. V. 36. № 1. P. 242–249. https://doi.org/10.1021/acs.langmuir.9b03100
- Melle-Franco M., Brinkmann G., Zerbetto F. Modeling Nanotube Caps: The Relationship Between Fullerenes and Caps // J. Phys. Chem. A. 2015. V. 119. № 51. P. 12839–12844. https://doi.org/10.1021/acs.jpca.5b09244
- Zeinalipour-Yazdi C.D., Loizidou E.Z. Study of the Cap Structure of (3,3), (4,4) and (5,5)-SWCNTs: Application of the Sphere-in-Contact Model // Carbon N.Y. 2017. V. 115. P. 819–827. https://doi.org/10.1016/j.carbon.2017.01.074
- Kharissova O.V., Kharisov B.I. Variations of Interlayer Spacing in Carbon Nanotubes // RSC Adv. 2014. V. 4. № 58. P. 30807–30815. https://doi.org/10.1039/C4RA04201H
- Tomada J., Dienel T., Hampel F., Fasel R., Amsharov K. Combinatorial Design of Molecular Seeds for Chirality-Controlled Synthesis of Single-Walled Carbon Nanotubes // Nat. Commun. 2019. V. 10. № 1. P. 3278. https://doi.org/10.1038/s41467-019-11192-y
- Lu J.P. Elastic Properties of Carbon Nanotubes and Nanoropes // Phys. Rev. Lett. 1997. V. 79. № 7. P. 1297–1300. https://doi.org/10.1103/PhysRevLett.79.1297
- Li F., Cheng H.M., Bai S., Su G., Dresselhaus M.S. Tensile Strength of Single-Walled Carbon Nanotubes Directly Measured from Their Macroscopic Ropes // Appl. Phys. Lett. 2000. V. 77. № 20. P. 3161–3163. https://doi.org/10.1063/1.1324984
- Charlier J.-C., Blase X., Roche S. Electronic and Transport Properties of Nanotubes // Rev. Mod. Phys. 2007. V. 79. № 2. P. 677–732. https://doi.org/10.1103/RevModPhys.79.677
- Pop E., Mann D., Wang Q., Goodson K., Dai H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature // Nano Lett. 2006. V. 6. № 1. P. 96–100. https://doi.org/10.1021/nl052145f
- Korusenko P.M., Nesov S.N., Povoroznyuk S.N., Bolotov V.V., Knyazev E.V., Pushkarev A.I., Smirnov D.A. Modifying the Structure of Multiwalled Carbon Nanotubes with Continuous and Pulsed Ion Beams // Phys. Solid State. 2018. V. 60. № 12. P. 2616–2622. https://doi.org/10.1134/S106378341812017X
- Klein K.L., Melechko A.V., McKnight T.E., Retterer S.T., Rack P.D., Fowlkes J.D., Joy D.C., Simpson M.L. Surface Characterization and Functionalization of Carbon Nanofibers // J. Appl. Phys. 2008. V. 103. № 6. https://doi.org/10.1063/1.2840049
- Zhou X., Wang Y., Gong C., Liu B., Wei G. Production, Structural Design, Functional Control, and Broad Applications of Carbon Nanofiber-Based Nanomaterials: A Comprehensive Review // Chem. Eng. J. 2020. V. 402. P. 126189. https://doi.org/10.1016/j.cej.2020.126189
- Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M.A., Klein K.L., Lowndes D.H., Simpson M.L. Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly // J. Appl. Phys. 2005. V. 97. № 4. https://doi.org/10.1063/1.1857591
- Minezaki H., Ishihara S., Uchida T., Muramatsu M., Rácz R., Asaji T., Kitagawa A., Kato Y., Biri S., Yoshida Y. Synthesis of Endohedral Iron-Fullerenes by Ion Implantation // Rev. Sci. Instrum. 2014. V. 85. № 2. https://doi.org/10.1063/1.4850756
- Ishaq A., Iqbal S., Ali N., Khurram A.A., Akrajas A.U., Dee C.F., Naseem S., Rafique H.M., Long Y. H+, N+, and Ar+ Ion Irradiation Induced Structure Changes of Carbon Nanostructures // New Carbon Mater. 2013. V. 28. № 2. P. 81–86. https://doi.org/10.1016/S1872-5805(13)60068-2
- Krasheninnikov A.V., Nordlund K., Keinonen J. Effects of Ion Irradiation on Supported Carbon Nanotubes and Nanotube-Substrate Interfaces // MRS Proceedings. 2001. V. 706. P. Z6.10.1. https://doi.org/10.1557/PROC-706-Z6.10.1
- Pregler S.K., Sinnott S.B. Molecular Dynamics Simulations of Electron and Ion Beam Irradiation of Multiwalled Carbon Nanotubes: The Effects on Failure by Inner Tube Sliding // Phys. Rev. B. 2006. V. 73. № 22. P. 224106. https://doi.org/10.1103/PhysRevB.73.224106
- Krasheninnikov A.V., Banhart F. Engineering of Nanostructured Carbon Materials with Electron or Ion Beams // Nat. Mater. 2007. V. 6. № 10. P. 723–733. https://doi.org/10.1038/nmat1996
- Ni Z., Ishaq A., Yan L., Gong J., Zhu D. Enhanced Electron Field Emission of Carbon Nanotubes by Si Ion Beam Irradiation // J. Phys. D.: Appl. Phys. 2009. V. 42. № 7. P. 075408. https://doi.org/10.1088/0022-3727/42/7/075408
- Gigax J., Bradford P., Shao L. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum // Materials. 2017. V. 10. № 8. P. 860. https://doi.org/10.3390/ma10080860
- Kotakoski J., Krasheninnikov A.V., Nordlund K. Atomistic Simulations of Irradiation Effects in Carbon Nanotubes: An Overview // Radiat. Eff. Defects Solids. 2007. V. 162. № 3–4. P. 157–169. https://doi.org/10.1080/10420150601132537
- Ishaq A., Ni Z., Yan L., Gong J., Zhu D. Constructing Carbon Nanotube Junctions by Ar Ion Beam Irradiation // Radiat. Phys. Chem. 2010. V. 79. № 6. P. 687–691. https://doi.org/10.1016/j.radphyschem.2010.01.006.
- Ni Z., Li Q., Gong J., Zhu D., Zhu Z. Structural Change of Carbon Nanotubes Produced by Si Ion Beam Irradiation // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 260. № 2. P. 542–546. https://doi.org/10.1016/j.nimb.2007.04.227
- Hulman M., Skákalová V., Krasheninnikov A.V., Roth S. Effects of Ion Beam Heating on Raman Spectra of Single-Walled Carbon Nanotubes // Appl. Phys. Lett. 2009. V. 94. № 7. https://doi.org/10.1063/1.3077311
- Tomizawa H., Suzuki K., Yamaguchi T., Akita S., Ishibashi K. Control of Tunnel Barriers in Multi-Wall Carbon Nanotubes Using Focused Ion Beam Irradiation // Nanotechnology. 2017. V. 28. № 16. P. 165302. https://doi.org/10.1088/1361-6528/aa6568
- Abbas Y., Khan M.U., Ravaux F., Mohammad B., Rezeq M. Focused Ion Beam Engineering of Carbon Nanotubes for Optical Rectenna Applications // ACS Appl. Nano Mater. 2022. V. 5. № 12. P. 18537–18544. https://doi.org/10.1021/acsanm.2c04353
- Lehtinen O., Nikitin T., Krasheninnikov A.V., Sun L., Banhart F., Khriachtchev L., Keinonen J. Characterization of Ion-Irradiation-Induced Defects in Multi-Walled Carbon Nanotubes // New J. Phys. 2011. V. 13. № 7. P. 073004. https://doi.org/10.1088/1367-2630/13/7/073004
- Xue S.-X., Li Q.-T., Zhao X.-R., Shi Q.-Y., Li Z.-G., Liu Y.-P. Carbon Nanofibers from Carbon Nanotubes by 1.2 keV Sputtering at Room Temperature // J. Nanomater. 2014. V. 2014. P. 1–5. https://doi.org/10.1155/2014/313095
- Krasheninnikov A.V., Nordlund K. Ion and Electron Irradiation-Induced Effects in Nanostructured Materials // J. Appl. Phys. 2010. V. 107. № 7. https://doi.org/10.1063/1.3318261
- Williams S.M., Pinnick R.A., Sun L., Dewey O.S., Headrick R.J., Pasquali M. Measurement of a Diameter-Dependent Charge Transfer in Solution-Phase Carbon Nanotubes Using Raman Spectroscopy // J. Phys. Chem. C. 2023. V. 127. № 32. P. 15911–15917. https://doi.org/10.1021/acs.jpcc.3c02914
- Acuña J.J.S., Escobar M., Goyanes S.N., Candal R.J., Zanatta A.R., Alvarez F. Effect of O2+, H2++ O2+, and N2++ O2+ Ion-Beam Irradiation on the Field Emission Properties of Carbon Nanotubes // J. Appl. Phys. 2011. V. 109. № 11. https://doi.org/10.1063/1.3593269
- Wang Y., Cheng X., Zhang K., Chen G., Wang R., Zhang J. Ion-Irradiation of Catalyst and Electrode Materials for Water Electrolysis/Photoelectrolysis Cells, Rechargeable Batteries, and Supercapacitors // Mater. Adv. 2022. V. 3. № 20. P. 7384–7405. https://doi.org/10.1039/D2MA00547F
- Fink D., r. Klett, Szimkoviak P., Kastner J., Palmetshofer L., Chadderton L.T., Wang L., Kuzmany H. Ion Beam Radiation Damage of Thin Fullerene Films // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 108. № 1–2. P. 114–124. https://doi.org/10.1016/0168-583X(95)00868-3
- Shunaev V.V., Bobenko N.G., Korusenko P.M., Egorushkin V.E., Glukhova O.E. Carboxyl Functionalization of N-MWCNTs with Stone–Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery // Int. J. Mol. Sci. 2023. V. 24. № 2. P. 1296. https://doi.org/10.3390/ijms24021296
- Nesov S.N., Bolotov V.V., Knyazev E.V., Povoroznyuk S.N. Analysis of Structure and Electrochemical Characteristics of Multi-Walled Carbon Nanotubes Doped with Nitrogen Using Ion Irradiation // Nucl. Instrum. Methods. Phys. Res. B. 2022. V. 525. P. 25–33. https://doi.org/10.1016/j.nimb.2022.06.006
- Sharma P., Singhal R., Vishnoi R., Banerjee M.K., Kaushik R., Kamma K.V., Lakshmi G.B.V.S., Tripathi A., Avasthi D.K. Surface and Structural Studies of Fullerene C70 Under Ion Irradiation // Surf. Eng. 2016. V. 32. № 11. P. 846–852. https://doi.org/10.1080/02670844.2016.1185838
- Korusenko P.M., Nesov S.N., Iurchenkova A.A., Fedorovskaya E.O., Bolotov V. V., Povoroznyuk S.N., Smirnov D.A., Vinogradov A.S. Comparative Study of the Structural Features and Electrochemical Properties of Nitrogen-Containing Multi-Walled Carbon Nanotubes after Ion-Beam Irradiation and Hydrochloric Acid Treatment // Nanomaterials. 2021. V. 11. № 9. P. 2163. https://doi.org/10.3390/nano11092163
- Watanabe Y., Aono M., Kitazawa N. Nitrogen Ion Beam Irradiation on Amorphous Carbon // Mater. Sci. Forum. 2007. V. 539–543. P. 3297–3302. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3297
- Belosludtseva A.A., Bobenko N.G., Egorushkin V.E., Korusenko P.M., Melnikova N.V., Nesov S.N. Oxygen Functionalization and Electronic Band Gap Control in the Disordered Multi-Walled Carbon Nanotubes // Synth. Met. 2021. V. 280. P. 116866. https://doi.org/10.1016/j.synthmet.2021.116866
- Nesov S.N., Korusenko P.M., Bolotov V.V., Ivlev K.E., Chernikov E.V., Povoroznyuk S.N. Functionalization of Multiwalled Carbon Nanotubes by an Ion Beam to Increase the Interfacial Adhesion in Tin Oxide Composites // Tech. Phys. Lett. 2020. V. 46. № 8. P. 752–755. https://doi.org/10.1134/S1063785020080118
- Barabashko, M.S., Drozd, M., Szewczyk, D., Jeżowski, A., Bagatskii, M.I., Sumarokov, V.V., Dolbin, A.V., Nesov, S.N., Korusenko, P.M., Ponomarev, A.N., Geidarov V.G., Kuznetsov V.L., Moseenkov S.I., Sokolov D.V., Smirnov D.A. Calorimetric, NEXAFS and XPS Studies of MWCNTs with Low Defectiveness // Fullerenes, Nanotubes Carbon Nanostruct. 2021. V. 29. №. 5. P. 331–336. https://doi.org/10.1080/1536383X.2020.1819251
- Korusenko P.M., Bolotov V.V., Nesov S.N., Povoroznyuk S.N., Khailov I.P. Changes of the Electronic Structure of the Atoms of Nitrogen in Nitrogen-Doped Multiwalled Carbon Nanotubes Under the Influence of Pulsed Ion Radiation // Nucl. Instrum. Methods Phys. Res B. 2015. V. 358. P. 131–135. https://doi.org/10.1016/j.nimb.2015.06.009
- Nesov S.N., Korusenko P.M., Bolotov V.V., Povoroznyuk S.N., Knyazev E.V. Application of Ion-Beam Irradiation and Heat Treatment to Optimisation of the Structure and Properties of Composites Based on Multi-Walled Carbon Nanotubes and Metal Oxide // AIP Conf. Proceedings. AIP Publishing. 2019.V. 2141. № 1. https://doi.org/10.1063/1.5122135
- Okumoto T., Taniguchi J., Kamiya Y. Fabrication of Carbon Nanofibers Using Only Ion Beam Irradiation to Glassy Carbon // Microelectron. Eng. 2011. V. 88. № 8. P. 1832–1835. https://doi.org/10.1016/j.mee.2011.02.062
- Prawer S., Nugent K.W., Biggs S., McCulloch D.G., Leong W.H., Hoffman A., Kalish R. Ion-Beam Modification of Fullerene // Phys. Rev. B. 1995. V. 52. № 2. P. 841–849. https://doi.org/10.1103/PhysRevB.52.841
- Hoffman A., Paterson P.J.K., Johnston S.T., Prawer S. Ion-beam-Induced Modification of Fullerene Films as Studied by Electron-Energy-Loss Spectroscopy // Phys. Rev. B. 1996. V. 53. № 3. P. 1573–1578. https://doi.org/10.1103/PhysRevB.53.1573
- Zeng J., Liu J., Zhang S.-X., Zhai P.-F., Yao H.-J., Duan J.-L., Guo H., Hou M.-D., Sun Y.-M. Irradiation Effects of Graphene and Thin Layer Graphite Induced by Swift Heavy Ions // Chin. Phys. B. 2015. V. 24. № 8. P. 086103. https://doi.org/10.1088/1674-1056/24/8/086103
- Li H., Daukiya L., Haldar S., Lindblad A., Sanyal B., Eriksson O., Aubel D., Hajjar-Garreau S., Simon L., Leifer K. Site-Selective Local Fluorination of Graphene Induced by Focused Ion Beam Irradiation // Sci. Rep. 2016. V. 6. № 1. P. 19719. https://doi.org/10.1038/srep19719
- Cutroneo M., Torrisi L., Silipigni L., Michalcova A., Havranek V., Mackova A., Malinsky P., Lavrentiev V., Noga P., Dobrovodsky J., Slepicka P., Fajstavr D., Andò L., Holy V. Compositional and Structural Modifications by Ion Beam in Graphene Oxide for Radiation Detection Studies // Int. J. Mol. Sci. 2022. V. 23. № 20. P. 12563. https://doi.org/10.3390/ijms232012563
- Kotakoski J., Brand C., Lilach Y., Cheshnovsky O., Mangler C., Arndt M., Meyer J.C. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene // Nano Lett. 2015. V. 15. № 9. P. 5944–5949. https://doi.org/10.1021/acs.nanolett.5b02063
- Scardamaglia M., Amati M., Llorente B., Mudimela P.R., Colomer J.-F., Ghijsen J., Ewels C., Gregoratti L., Bittencourt C. Nitrogen Ion Casting on Vertically Aligned Carbon Nanotubes: Tip and Sidewall Chemical Modification // Carbon. 2014. V. 77. P. 319–328. https://doi.org/ 10.1016/j.carbon.2014.05.035
- Zhao M., Cao Y., Liu X., Deng J., Li D., Gu H. Effect of Nitrogen Atomic Percentage on N+-bombarded MWCNTs in Cytocompatibility and Hemocompatibility // Nanoscale Res. Lett. 2014. V. 9. № 1. P. 142. https://doi.org/10.1186/1556-276X-9-142
- Lim S.H., Elim H.I., Gao X.Y., Wee A.T.S., Ji W., Lee J.Y., Lin J. Electronic and Optical Properties of Nitrogen-Doped Multiwalled Carbon Nanotubes // Phys. Rev. B. 2006. V. 73. № 4. P. 045402. https://doi.org/10.1103/PhysRevB.73.045402
- Krasheninnikov A.V., Nordlund K. Irradiation Effects in Carbon Nanotubes // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 216. P. 355–366. https://doi.org/10.1016/j.nimb.2003.11.061
- Elsehly E.M., Chechenin N.G., Shemukhin A.A., Motaweh H.A. Enhancing the Surface Properties and Structure of MWNTs by Effective Ion Beam Irradiation // Nanoarchitectonics. 2021. P. 101–108. https://doi.org/10.37256/nat.2220211003
- Zhang Y., Chen L., Xu Z., Li Y., Shan M., Liu L., Guo Q., Chen G., Wang Z., Wang C. Effects of Ion Irradiation on Carbon Nanotubes: A Review // Int. J. Mater. Prod. Technol. 2012. V. 45. № 1–4. P. 1. https://doi.org/10.1504/IJMPT.2012.051328
- Bolotov V.V., Knyazev E.V., Korusenko P.M., Nesov S.N., Sachkov V.A. Functionalization of Individual Multi-Wall Carbon Nanotubes during Irradiation and Annealing // Phys. Solid State. 2020. V. 62. № 11. P. 2173–2183. https://doi.org/10.1134/S1063783420110098
- Bangert U., Bleloch A., Gass M.H., Seepujak A., van den Berg J. Doping of Few-Layered Graphene and Carbon Nanotubes Using Ion Implantation // Phys. Rev. B. 2010. V. 81. № 24. P. 245423. https://doi.org/10.1103/PhysRevB.81.245423
- Acosta S., Chafer J.C., Castillo A.S., Llobet E., Snyders R., Colomer J.-F., Quintana M., Ewels C., Bittencourt C. Low Kinetic Energy Oxygen Ion Irradiation of Vertically Aligned Carbon Nanotubes // Appl. Sci. 2019. V. 9. № 24. P. 5342. https://doi.org/10.3390/app9245342
- Nesov S.N., Bolotov V.V., Knyazev E.V., Povoroznyuk S.N. Analysis of Structure and Electrochemical Characteristics of Multi-Walled Carbon Nanotubes Doped with Nitrogen Using Ion Irradiation // Nucl. Instrum. Methods Phys. Res. B. 2022. V. 525. P. 25–33. https://doi.org/10.1016/j.nimb.2022.06.006
- Raghuveer M.S., Kumar A., Frederick M.J., Louie G.P., Ganesan P.G., Ramanath G. Site‐Selective Functionalization of Carbon Nanotubes // Adv. Mater. 2006. V. 18. № 5. P. 547–552. https://doi.org/10.1002/adma.200500181
- Nesov S.N., Korusenko P.M., Povoroznyuk S.N., Bolotov V. V., Knyazev E.V., Smirnov D.A. Effect of Carbon Nanotubes Irradiation by Argon Ions on the Formation of SnO2-x /MWCNTs Composite // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 410. P. 222–229. https://doi.org/10.1016/j.nimb.2017.08.040
- Ivlev K.E., Nesov S.N., Korusenko P.M., Povoroznyuk S.N., Bolotov V.V. Modification of Carbon Nanotubes by an Ion Beam of Argon // J. Phys. Conf. Ser. 2019. V. 1210. P. 012058. https://doi.org/10.1088/1742-6596/1210/1/012058
- Nesov S.N., Korusenko P.M., Bolotov V. V., Povoroznyuk S.N., Smirnov D.A. Electronic Structure of Nitrogen-Containing Carbon Nanotubes Irradiated with Argon Ions: XPS and XANES Studies // Phys. Solid State. 2017. V. 59. № 10. P. 2030–2035. https://doi.org/10.1134/S1063783417100286
- Bolotov V.V., Korusenko P.M., Nesov S.N., Povoroznyuk S.N., Knyazev E.V. The Origin of Changes in the Electronic Structure of Oriented Multi-Walled Carbon Nanotubes Under the Influence of Pulsed Ion Radiation // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 337. P. 1–6. https://doi.org/10.1016/j.nimb.2014.07.014
- Evseev A.P., Vorobyeva E.A., Balakshin Yu.V., Kushkina K.D., Stepanov A.V., Сhernysh V.S., Chechenin N.G., Shemukhin A.A. MWCNT-Based Surfaces with Tunable Wettability Obtained by He+ Ion Irradiation // Surf. Interfaces. 2021. V. 23. P. 100955. https://doi.org/10.1016/j.surfin.2021.100955
- Bogaerts A., Neyts E., Gijbels R., van der Mullen J. Gas Discharge Plasmas and Their Applications // Spectrochim. Acta Part B. At. Spectrosc. 2002. V. 57. № 4. P. 609–658. https://doi.org/10.1016/S0584-8547(01)00406-2
- Ito T., Terashima K. Thermoelectron-Enhanced Micrometer-Scale Plasma Generation // Appl. Phys. Lett. 2002. V. 80. № 15. P. 2648–2650. https://doi.org/10.1063/1.1468898
- Kareem T.A., Kaliani A.A. Glow Discharge Plasma Electrolysis for Nanoparticles Synthesis // Ionics. 2012. V. 18. P. 315–327. https://doi.org/10.1007/s11581-011-0639-y
- Thandavan T.M.K., Wong C.S., Gani S.M.A., Nor R.M. [O] [H] Functionalization on Carbon Nanotube Using (O2–H2) Gas Mixture DC Glow Discharge // Appl. Nanosci. 2012. V. 2. № 1. P. 47–53. https://doi.org/10.1007/s13204-011-0040-1
- Savilov S., Suslova E., Epishev V., Tveritinova E., Zhitnev Y., Ulyanov A., Maslakov K., Isaikina O. Conversion of Secondary C3-C4 Aliphatic Alcohols on Carbon Nanotubes Consolidated by Spark Plasma Sintering // Nanomaterials. 2021. V. 11. № 2. P. 352. https://doi.org/10.3390/nano11020352
- Mariotti D., Sankaran R.M. Microplasmas for Nanomaterials Synthesis // J. Phys. D: Appl. Phys. 2010. V. 43. № 32. P. 323001. https://doi.org/10.1088/0022-3727/43/32/323001
- Naseh M.V., Khodadadi A.A., Mortazavi Y., Pourfayaz F., Alizadeh O., Maghrebi M. Fast and Clean Functionalization of Carbon Nanotubes by Dielectric Barrier Discharge Plasma in Air Compared to Acid Treatment // Carbon N. Y. 2010. V. 48. № 5. P. 1369–1379. https://doi.org/10.1016/j.carbon.2009.12.027
- Chiang W., Mariotti D., Sankaran R.M., Eden J.G., Ostrikov K. Microplasmas for Advanced Materials and Devices // Adv. Mater. 2020. V. 32. № 18. P. 1905508. https://doi.org/10.1002/adma.201905508
- Kelesidis G.A., Pratsinis S.E. A Perspective on Gas-Phase Synthesis of Nanomaterials: Process Design, Impact and Outlook // Chem. Eng. J. 2021. V. 421. P. 129884. https://doi.org/10.1016/j.cej.2021.129884
- Jang H.J., Jung E.Y., Parsons T., Tae H.-S., Park C.-S. A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions // Polymers (Basel). 2021. V. 13. № 14. P. 2267. https://doi.org/10.3390/polym13142267
- Koo I.G., Lee M.S., Shim J.H., Ahn J.H., Lee W.M. Platinum Nanoparticles Prepared by a Plasma-Chemical Reduction Method // J. Mater. Chem. 2005. V. 15. № 38. P. 4125. https://doi.org/10.1039/b508420b
- Hieda J., Saito N., Takai O. Exotic Shapes of Gold Nanoparticles Synthesized Using Plasma in Aqueous Solution // J. Vacuum Sci. Technol., A. 2008. V. 26. № 4. P. 854–856. https://doi.org/10.1116/1.2919139
- Sato S., Mori K., Ariyada O., Atsushi H., Yonezawa T. Synthesis of Nanoparticles of Silver and Platinum by Microwave-Induced Plasma in Liquid // Surf. Coat. Technol. 2011. V. 206. № 5. P. 955–958. https://doi.org/10.1016/j.surfcoat.2011.03.110
- Nava-Avendaño J., Veilleux J. Plasma Processes in the Preparation of Lithium-Ion Battery Electrodes and Separators // J. Phys. D: Appl. Phys. 2017. V. 50. № 16. P. 163001. https://doi.org/10.1088/1361-6463/aa6245
- Zeghioud H., Nguyen-Tri P., Khezami L., Amrane A., Assadi A.A. Review on Discharge Plasma for Water Treatment: Mechanism, Reactor Geometries, Active Species and Combined Processes // J. Water Process Eng. 2020. V. 38. P. 101664. https://doi.org/10.1016/j.jwpe.2020.101664
- Rezaei F., Vanraes P., Nikiforov A., Morent R., Geyter N.D. Applications of Plasma-Liquid Systems: A Review // Materials. 2019. V. 12. № 17. P. 2751. https://doi.org/10.3390/ma12172751
- Lin L., Starostin S.A., Li S., Hessel V. Synthesis of Metallic Nanoparticles by Microplasma // Phys. Sci. Rev. 2018. V. 3. № 10. P. 20170121. https://doi.org/10.1515/psr-2017-0121
- Chen Q., Li J., Li Y. A Review of Plasma–Liquid Interactions for Nanomaterial Synthesis // J. Phys. D: Appl. Phys. 2015. V. 48. № 42. P. 424005. https://doi.org/10.1088/0022-3727/48/42/424005
- Brandenburg R., Bruggeman P.J., Starikovskaia S.M. Fast Pulsed Discharges // Plasma Sources Sci. Technol. 2017. V. 26. № 2. P. 020201. https://doi.org/ 10.1088/1361-6595/aa5205
- Qin L., Takeuchi N., Takahashi K., Kang J., Kim K.H., Li O.L. N2/Ar Plasma-Induced Surface Sulfonation on Graphene Nanoplatelets for Catalytic Hydrolysis of Cellulose to Glucose // Appl. Surf. Sci. 2021. V. 545. P. 149051. https://doi.org/10.1016/j.apsusc.2021.149051
- Schoenbach K.H., Becker K. 20 Years of Microplasma Research: A Status Report // The Eur. Phys. J. D. 2016. V. 70. № 2. P. 29. https://doi.org/ 10.1140/epjd/e2015-60618-1
- Wang Z., Xu C., Lu Y., Wei G., Ye G., Sun T., Chen J. Microplasma Electrochemistry Controlled Rapid Preparation of Fluorescent Polydopamine Nanoparticles and Their Application in Uranium Detection // Chem. Eng. J. 2018. V. 344. P. 480–486. https://doi.org/ 10.1016/j.cej.2018.03.096
- Locke B.R., Thagard S.M. Analysis and Review of Chemical Reactions and Transport Processes in Pulsed Electrical Discharge Plasma Formed Directly in Liquid Water // Plasma Chem. Plasma Process. 2012. V. 32. № 5. P. 875–917. https://doi.org/ 10.1007/s11090-012-9403-y
- Al-Jalal A.M., Khan M.A. Optical Emission and Raman Spectroscopy Studies of Reactivity of Low-Pressure Glow Discharges in Ar–O2 and He–O2 Gas Mixtures with Coked Catalysts // Plasma Chem. Plasma Process. 2010. V. 30. № 1. P. 173–182. https://doi.org/ 10.1007/s11090-009-9201-3
- Park G., Lee H., Kim G., Lee J.K. Global Model of He/O2 and Ar/O2 Atmospheric Pressure Glow Discharges // Plasma Process. Polymers. 2008. V. 5. № 6. P. 569–576. https://doi.org/10.1002/ppap.200800019
- Ali S., Shah I.A., Ahmad A., Nawab J., Huang H. Ar/O2 Plasma Treatment of Carbon Nanotube Membranes for Enhanced Removal of Zinc from Water and Wastewater: A Dynamic Sorption-Filtration Process // Sci. Total Environ. 2019. V. 655. P. 1270–1278. https://doi.org/ 10.1016/j.scitotenv.2018.11.335
- Lin C.-C., Huang H.-C. Radio Frequency Oxygen–Plasma Treatment of Carbon Nanotube Electrodes for Electrochemical Capacitors // J. Power Sources. 2009. V. 188. № 1. P. 332–337. https://doi.org/10.1016/j.jpowsour.2008.11.100
- Ishizaki T., Chiba S., Kaneko Y., Panomsuwan G. Electrocatalytic Activity for the Oxygen Reduction Reaction of Oxygen-Containing Nanocarbon Synthesized by Solution Plasma // J. Mater. Chem. A. 2014. V. 2. № 27. P. 10589. https://doi.org/10.1039/c4ta01577k
- Ohta S., Suzuki Y., and Sudoh M. Surface Modification of Activated Carbon with Cold Plasma Treatment for High Power Capacitor // Electrochemistry. 2007. V. 75. № 9. P. 702–704. https://doi.org/ 10.5796/electrochemistry.75.702
- Bruggeman P.J., Frontiera R.R., Kortshagen U.R., Kushner M.J., Linic S., Schatz G.C., Andaraarachchi H., Exarhos S., Jones L.O., Mueller C.M., Rich C.C., Xu C., Yue Y., Zhang Y. Plasma-Driven Solution Electrolysis // J. Appl. Phys. 2021. V. 129. № 20. https://doi.org/10.1063/5.0044261
- Chokradjaroen C., Wang X., Niu J., Fan T., Saito N. Fundamentals of Solution Plasma for Advanced Materials Synthesis // Mater. Today Adv. 2022. V. 14. P. 100244. https://doi.org/ 10.1016/j.mtadv.2022.100244
- Wold A. Photocatalytic Properties of Titanium Dioxide (TiO2) // Chem. Mater. 1993. V. 5. № 3. P. 280–283. https://doi.org/10.1021/cm00027a008
- Schwarz H.A. Free Radicals Generated by Radiolysis of Aqueous Solutions // J. Chem. Educ. 1981. V. 58. № 2. P. 101. https://doi.org/10.1021/ed058p101
- Li O.L., Ikura R., Ishizaki T. Hydrolysis of Cellulose to Glucose over Carbon Catalysts Sulfonated via a Plasma Process in Dilute Acids // Green Chem. 2017. V. 19. № 20. P. 4774–4777. https://doi.org/10.1039/C7GC02143G
- Li O.L., Qin L., Takeuchi N., Kim K., Ishizaki T. Effect of Hydrophilic/Hydrophobic Properties of Carbon Materials on Plasma-Sulfonation Process and Their Catalytic Activities in Cellulose Conversion // Catal. Today. 2019. V. 337. P. 155–161. https://doi.org/10.1016/j.cattod.2019.04.025
- Reddy P.M.K., Raju B.R., Karuppiah J., Reddy E.L., Subrahmanyam Ch. Degradation and Mineralization of Methylene Blue by Dielectric Barrier Discharge Non-Thermal Plasma Reactor // Chem. Eng. J. 2013. V. 217. P. 41–47. https://doi.org/10.1016/j.cej.2012.11.116
- Liang C., Wang Z.-S., Bruell C.J. Influence of pH on Persulfate Oxidation of TCE at Ambient Temperatures // Chemosphere. 2007. V. 66. № 1. P. 106–113. https://doi.org/10.1016/j.chemosphere.2006.05.026
- Tan Q., Shi Z., Wu D. CO2 Hydrogenation to Methanol over a Highly Active Cu–Ni/CeO2 –Nanotube Catalyst // Ind. Eng. Chem. Res. 2018. V. 57. № 31. P. 10148–10158. https://doi.org/10.1021/acs.iecr.8b01246
- Lusha Q., Lee S., Li O.L. Fast and Soft Functionalization of Carbon Nanotube with-SO3H,-COOH,-OH Groups for Catalytic Hydrolysis of Cellulose to Glucose // J. Korean Inst. Surf. Eng. 2020. V. 53. №. 3. P. 87-94. https://doi.org/10.5695/JKISE.2020.53.3.87
- Sripada S., Kastner J.R. Catalytic Esterification Using Solid Acid Carbon Catalysts Synthesized by Sustainable Hydrothermal and Plasma Sulfonation Techniques // Ind. Eng. Chem. Res. 2022. V. 61. № 11. P. 3928–3940. https://doi.org/10.1021/acs.iecr.2c00086
- Qin L., Ishizaki T., Takeuchi N., Takahashi K., Kim K.H., Li O.L. Green Sulfonation of Carbon Catalysts via Gas–Liquid Interfacial Plasma for Cellulose Hydrolysis // ACS Sustain Chem. Eng. 2020. V. 8. № 15. P. 5837–5846. https://doi.org/10.1021/acssuschemeng.9b07156
- Rokhum S.L., Changmai B., Kress T., Wheatley A.E.H. A One-Pot Route to Tunable Sugar-Derived Sulfonated Carbon Catalysts for Sustainable Production of Biodiesel by Fatty Acid Esterification // Renew Energy. 2022. V. 184. P. 908–919. https://doi.org/10.1016/j.renene.2021.12.001
- Guo H., Qi X., Li L., Smith R.L. Hydrolysis of Cellulose over Functionalized Glucose-Derived Carbon Catalyst in Ionic Liquid // Bioresour Technol. 2012. V. 116. P. 355–359. https://doi.org/10.1016/j.biortech.2012.03.098
- Golestanzadeh M., Naeimi H. Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbon‐Based Catalysts for Synthesis of 1,3,5‐Triarylbenzenes: RGO‐SO3H vs. MWCNTs‐SO3H // ChemistrySelect. 2019. V. 4. № 6. P. 1909–1921. https://doi.org/10.1002/slct.201803626
- Yu H., Jin Y., Li Z., Peng F., Wang H. Synthesis and Characterization of Sulfonated Single-Walled Carbon Nanotubes and Their Performance as Solid Acid Catalyst // J. Solid State Chem. 2008. V. 181. № 3. P. 432–438. https://doi.org/10.1016/j.jssc.2007.12.017
- Peng F., Zhang L., Wang H., Lv P., Yu H. Sulfonated Carbon Nanotubes as a Strong Protonic Acid Catalyst // Carbon. 2005. V. 43. №. 11. P. 2405–2408. https://doi.org/10.1016/j.carbon.2005.04.004
- Riascos L.D.R., Sanabria A.E.R., Rodríguez G.A.T., Sachse A., Muñoz C.D.M. Sulfonated Reduced Graphene Oxide: An Acid Catalyst that Efficiently Promotes the Esterification of Glycerol // Top Catal. 2022. V. 65. № 7–8. P. 957–965. https://doi.org/10.1007/s11244-022-01629-y
- He Z., Jiang Y., Li Y., Wang L., Dai L. Boosting the Electrocatalytic Performance of Carbon Nanotubes toward V(V)/V(IV) Reaction by Sulfonation Treatment // Int. J. Energy Res. 2018. V. 42. № 4. P. 1625–1634. https://doi.org/10.1002/er.3958
- Luo T., Xu H., Li Z., Gao S., Ouadah A., Zhang Z., Zhang Y., Wang F., Jing C., Zhu C. Novel Proton Conducting Membranes from the Combination of Sulfonated Polymers of Polyetheretherketones and Polyphosphazenes Doped with Sulfonated Single‐Walled Carbon Nanotubes // Macromol. Mater. Eng. 2017. V. 302. № 7. P. 1700095. https://doi.org/10.1002/mame.201700095
- Nakhate A.V., Yadav G.D. Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation // ACS Sustain Chem. Eng. 2016. V. 4. № 4. P. 1963–1973. https://doi.org/10.1021/acssuschemeng.5b01205
- Fan H., Huang Y., Yip N.Y. Advancing the Conductivity-Permselectivity Tradeoff of Electrodialysis Ion-Exchange Membranes with Sulfonated CNT Nanocomposites // J. Memb. Sci. 2020. V. 610. P. 118259. https://doi.org/ 10.1016/j.memsci.2020.118259
- Martínez-Sánchez B., Quílez-Bermejo J., Cazorla-Amorós D., Morallón E. Electrocatalysis with Metal-Free Carbon-Based Catalysts // Carbon-Based Metal Free Catal. 2022. P. 213–244. https://doi.org/ 10.1016/B978-0-323-88515-7.00007-9
- Chen H., He P., Li M., Wen Y., Cao G., Qiu J., Ming H., Zhao P., Zhang S. Bifunctional Sulfonated Graphene-Modified LiNi0.5Mn1.5O4 for Long-Life and High-Energy-Density Lithium-Ion Batteries // ACS Appl. Energy Mater. 2021. V. 4. № 6. P. 5963–5972. https://doi.org/10.1021/acsaem.1c00808
- Wu B., Li G., Liu F. 3D SnO2/Sulfonated Graphene Composites with Interpenetrating Porous Structure as Anode Material for Lithium-Ion Batteries // Int. J. Hydrogen Energy. 2017. V. 42. № 34. P. 21849–21854. https://doi.org/10.1016/j.ijhydene.2017.07.089
- Akbar A.R., Hu H., Qadir M.B., Tahir M., Khaliq Z., Liu Z., Xiong C., Yang Q. Optimized Structure and Electrochemical Properties of Sulfonated Carbon Nanotubes/Co–Ni Bimetallic Layered Hydroxide Composites for High-Performance Supercapacitors // Ceram. Int. 2021. V. 47. № 4. P. 4648–4658. https://doi.org/10.1016/j.ceramint.2020.10.032
- Tian H., Zhu K., Jiang Y., Wang L., Li W., Yu Z., Wu C. Heterogeneous Assembly of Ni–Co Layered Double Hydroxide/Sulfonated Graphene Nanosheet Composites as Battery-Type Materials for Hybrid Supercapacitors // Nanoscale Adv. 2021. V. 3. № 10. P. 2924–2933. https://doi.org/10.1039/D1NA00001B
- Salehi E., Taleghani H.G., Lashkenari M.S., Ghorbani M. Synthesis and Electrochemical Properties of Polyaniline/S-Rgo Nanocomposites with Different S-rGO Contents for Hybrid Energy Storage Devices // J. Electroanal. Chem. 2022. V. 909. P. 116138. https://doi.org/10.1016/j.jelechem.2022.116138
- Akbar A.R., Wu J., Tahir M., Hu H., Yu C., Qadir M.B., Mateen F., Xiong C., Yang Q. Synthesis of the Novel Binary Composite of Self-Suspended Polyaniline (S-PANI) and Functionalized Multi-Walled Carbon Nanotubes for High-Performance Supercapacitors // Ionics (Kiel). 2021. V. 27. № 4. P. 1743–1755. https://doi.org/10.1007/s11581-021-03917-1
- Zhu Z., Wang G., Sun M., Li X., Li C. Fabrication and Electrochemical Characterization of Polyaniline Nanorods Modified with Sulfonated Carbon Nanotubes for Supercapacitor Applications // Electrochim. Acta. 2011. V. 56. № 3. P. 1366–1372. https://doi.org/10.1016/j.electacta.2010.10.070
- Gao B., Fu Q., Su L., Yuan C., Zhang X. Preparation and Electrochemical Properties of Polyaniline Doped with Benzenesulfonic Functionalized Multi-Walled Carbon Nanotubes // Electrochim. Acta. 2010. V. 55. № 7. P. 2311–2318. https://doi.org/10.1007/s10008-021-04988-w
- Ega S.P., Srinivasan P. Sulfonated rGO from Waste Dry Cell Graphite Rod and Its Hybrid with PANI as Electrode for Supercapacitor // J. Solid State Electrochem. 2021. V. 25. № 8–9. P. 2235–2247. https://doi.org/10.1007/s10008-021-04988-w
- Zhou Q., Zhao Z., Chen Y., Hu H., Qiu J. Low Temperature Plasma-Mediated Synthesis of Graphene Nanosheets for Supercapacitor Electrodes // J. Mater. Chem. 2012. V. 22. № 13. P. 6061. https://doi.org/10.1039/c2jm15572a
- Dou S., Tao L., Wang R., Hankari S. El., Chen R., Wang S. Plasma‐Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy // Adv. Mater. 2018. V. 30. № 21. P. 1705850. https://doi.org/10.1002/adma.201705850
- Korusenko P.M., Nesov S.N., Bolotov V.V., Povoroznyuk S.N., Sten’kin Yu.A., Pushkarev A.I., Fedorovskaya E.O., Smirnov D.A. Structure and Electrochemical Characterization of SnOx/Sn@MWCNT Composites Formed by Pulsed Ion Beam Irradiation // J. Alloys Compd. 2019. V. 793. P. 723–731. https://doi.org/10.1016/j.jallcom.2019.04.066
- Hu J., Jiang L., Zhang C., Zhang X., Meng Y., Wang X. Enhanced Pt Performance with H2O Plasma Modified Carbon Nanofiber Support // Appl. Phys. Lett. 2014. V. 104. № 15. https://doi.org/10.1063/1.4871505
- Liu Z., Zhao Z., Wang Y., Dou S., Yan D., Liu D., Xia Z., Wang S. In Situ Exfoliated, Edge‐Rich, Oxygen‐Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis // Adv. Mater. 2017. V. 29. № 18. P. 1606207. https://doi.org/10.1002/adma.201606207
Supplementary files
