Влияние иттрия на свойства композитов ZrB2–SiC, армированных углеродным волокном

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложен способ, позволяющий снизить температуру проведения жидкофазного силицирования при формировании керамических композитов с матрицей на основе карбида кремния и диборида циркония с помощью формирования легкоплавкой эвтектики кремния и иттрия. С помощью термодинамических расчетов проведено обоснование и показана целесообразность введения иттрия в силицирующий агент. Впервые проведено жидкофазное силицирование композитов при температуре ниже температуры плавления кремния, что привело к снижению степени деградации углеродного волокна и при этом позволило сохранить высокую плотность и однородность получаемой матрицы.

Об авторах

Р. А. Орбант

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный университет

Email: utkin@solid.nsc.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18; Россия, 630090, Новосибирск, ул. Пирогова, 1

А. В. Уткин

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный университет

Автор, ответственный за переписку.
Email: utkin@solid.nsc.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18; Россия, 630090, Новосибирск, ул. Пирогова, 1

Д. А. Банных

Институт химии твердого тела и механохимии СО Российской академии наук

Email: utkin@solid.nsc.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18

М. А. Голосов

Институт химии твердого тела и механохимии СО Российской академии наук

Email: utkin@solid.nsc.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18

Н. И. Бакланова

Институт химии твердого тела и механохимии СО Российской академии наук

Email: utkin@solid.nsc.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18

Список литературы

  1. Zhao J., Cai R., Ma Z., Zhang K., Liang H., Qiu H., Liu S., Xie W. Preparation and Properties of C/SiC Composites Reinforced by High Thermal Conductivity Graphite Films // Diamond Relat. Mater. 2021. V. 116. P. 108376. https://doi.org/10.1016/j.diamond.2021.108376
  2. Cheng L., Xu Y., Zhang L., Luan X. Oxidation and Defect Control of CVD SiC Coating on Three-Dimensional C/SiC Composites // Carbon. 2002. V. 40. № 12. P. 2229–2234. https://doi.org/10.1016/S0008-6223(02)00103-3
  3. Asl M.S., Nayebi B., Ahmadi Z., Zamharir M.J., Shokouhimehr M. Effect of Carbon Additives on the Properties of ZrB2-based Composites: A Review // Ceram. Int. 2018. V. 44. P. 7334–7348. https://doi.org/10.1016/j.ceramint.2018.01.214
  4. Bansal N.P., Lamon J., Narottam P. Ceramic Matrix Composites: Materials, Modeling and Technology. Hoboken: Wiley, 2014. 725 p.
  5. Уткин А.В., Прокип В.Э., Банных Д.А., Голосов М.А., Бакланова Н.И. Микроструктура и механические свойства композитов C/(ZrB2-SiC), полученных из керамических лент // Неорган. материалы. 2022. Т. 58. № 2. С. 192–199. https://doi.org/10.31857/S0002337X22020142
  6. Xiao Y., Che J., Ji F. Study on Oxidation Resistance of Tyranno/C Composite Fiber // Mater. Chem. Phys. 2004. V. 83. № 1. P. 104–106. https://doi.org/10.1016/j.matchemphys.2003.09.007
  7. Yang D., Dong S., Hong C., Zhang X. Preparation, Modification, and Coating for Carbon-Bonded Carbon Fiber Composites: A Review // Ceram. Int. 2022. V. 48. № 11. P. 14935–14958. https://doi.org/10.1016/j.ceramint.2022.03.055
  8. Shukla A., Kang Y.-B., Pelton A.D. Thermodynamic Assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si Systems // Int. J. Mater. Res. 2009. V. 100. № 2. P. 208–217. https://doi.org/10.3139/146.110003
  9. Кузнецов Ф.А. Фундаментальные основы процессов химического осаждения пленок и структур для наноэлектроники. Новосибирск: Издательство СО РАН, 2013. 176 с.
  10. Matthews F.L., Rawlings R.D. Composite Materials: Engineering and Science. Cambridge: Woodhead, 1999. 486 p.
  11. Williams P.A., Sakidja R., Perepezko J.H., Ritt P. Oxidation of ZrB2–SiC Ultra-High Temperature Composites Over a Wide Range of SiC Content // J. Eur. Ceram. Soc. 2012. V. 32. № 14. P. 3875–3883. https://doi.org/10.1016/j.jeurceramsoc.2012.05.021
  12. Blanton T., Gates-Rector S. The Powder Diffraction File: A Quality Materials Characterization Database // Powder Diffr. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
  13. Levin I. NIST Inorganic Crystal Structure Database (ICSD). National Institute of Standards and Technology. 2018. https://doi.org/10.18434/M32147

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

4.

Скачать (105KB)
5.


© Р.А. Орбант, А.В. Уткин, Д.А. Банных, М.А. Голосов, Н.И. Бакланова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах