Structural Features of Coatings Produced by Cladding with STIM-2/30 SHS Electrodes and T-590 Commercially Available Electrodes
- 作者: Zhidovich A.O.1, Averichev O.A.2, Ivanov A.S.2, Karpov S.V.3
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Tambov State Technical University
- 期: 卷 59, 编号 10 (2023)
- 页面: 1192-1198
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/249407
- DOI: https://doi.org/10.31857/S0002337X23100147
- EDN: https://elibrary.ru/CCLMZW
- ID: 249407
如何引用文章
详细
T-590 commercially available electrodes for wear-resistant claddings and STIM-2/30 electrodes prepared by self-propagating high-temperature synthesis (SHS) extrusion and containing reinforcing titanium carbide particles have been used to produce protective layers on the surface of steel by electric arc cladding. We have determined the phase composition and structure of the clad coatings. The results demonstrate that the microstructure of the coatings produced by cladding with the use of T-590 electrodes is formed by a carbide eutectic. The reinforcing TiC phase in the SHS electrodes has been shown to pass into the clad layer and be uniformly distributed across the entire clad layer, which is accompanied by the formation of an intermediate diffusion layer on the coating–substrate fusion interface. The hardness and microhardness of the clad coatings are a factor of 2–4 higher than those of the steel substrate. Cladding with the use of T-590 electrodes ensures higher hardness of the clad layers, but an increase in the percentage of ferrite in their structure can lead to a decrease in their wear resistance. The coatings produced by cladding with the use of SHS electrodes have a favorable structure capable of ensuring high abrasive wear resistance.
作者简介
A. Zhidovich
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Email: chij@ism.ac.ru
俄罗斯联邦, Chernogolovka, 142432
O. Averichev
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: a10012012@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
A. Ivanov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: a10012012@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia
S. Karpov
Tambov State Technical University
编辑信件的主要联系方式.
Email: a10012012@ism.ac.ru
392000, Tambov, Russia
参考
- Tulaganova L., Yunushuzhaev S., Juraeva G. Improving the Wear Resistance and Durability of Cultivator Tools // J. Phys. Conf. Ser. 2022. V. 2373. P. 022026. https://doi.org/10.1088/1742-6596/2373/2/022026
- Сацик С.П. Влияние свойств абразивных частиц на износостойкость металлов // Наука без границ. 2019. Т. 32. № 4. С. 54–58.
- Добрин Д.А., Афанасьев А.В., Митусов С.С., Пикулева И.М. Современные технологии упрочнения рабочих органов почвообрабатывающих машин // Инновационные технологии, оборудование и материальные заготовки в машиностроении: сб. тр. Междун. науч.-технической конф. (Москва, 24–26 мая 2022 года). М.: МашТех, 2022. С. 293–295.
- Jankauskas V., Katinas E., Pusvaškis M. A Study of the Durability of Hardened Plough Point // J. Frict. Wear. 2020. V. 41. P. 78–84. https://doi.org/10.3103/S1068366620010171
- Begori V., Reddy C., Raghupathi. Tribological Characteristics of Stellite Hard faced Layer on Mild Steel // IOP Conf. Ser.: Mater. Sci. Eng. C. 2022. V. 1248. P. 012039. https://doi.org/10.1088/1757-899X/1248/1/012039
- Учкин П.Г. Исследование покрытий рабочих органов глубокорыхлителей, восстановленных плазменной наплавкой // Изв. ОГАУ. 2021. Т. 89. № 3. С. 126–131.
- Томарев Г.И., Кязымов Ф.А., Валитов М.З., Персиянов С.В. Износостойкий наплавочный материал: Пат. № 2644718 РФ. Б. И. № 5. 9 с.
- Столин А.М., Бажин П.М. Получение изделий многофункционального назначения из композитных и керамических материалов в режиме горения и высокотемпературного деформирования (СВС-экструзия) // ТОХТ. 2014. Т. 48. № 6. С. 603–615. https://doi.org/10.7868/S0040357114060116
- Болоцкая А.В., Михеев М.В. Получение методом СВС-экструзии компактных керамических электродных материалов на основе системы Ti‒B‒Fe, модифицированных наноразмерными частицами AlN // Новые огнеупоры. 2020. № 6. С. 51–55. https://doi.org/10.17073/1683-4518-2020-6-51-55
- Столин A.M., Бажин П.М., Михеев М.В., Аверичев О.А., Сагидоллаев А.С., Кылышбаев К.Т. Нанесение защитных покрытий электродуговой наплавкой СВС-электродами // Сварочное производство. 2014. № 8. С. 52–56.
补充文件
