Oxygen Storage Capacity of Y0.8Ca0.2BaCo4 – xMxO7 + δ (M = Fe, Ga, Al; 0 < x < 1) Solid Solutions during Thermal Cycling in Air
- 作者: Turkin D.I.1, Tolstov K.S.1, Yurchenko M.V.1, Suntsov A.Y.1, Kozhevnikov V.L.1
-
隶属关系:
- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- 期: 卷 59, 编号 10 (2023)
- 页面: 1141-1147
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/249395
- DOI: https://doi.org/10.31857/S0002337X23100123
- EDN: https://elibrary.ru/CDCLCA
- ID: 249395
如何引用文章
详细
We have studied the behavior of Y1 – yCayBaCo4 – xMxO7 + δ solid solutions in cyclic oxygen absorption/release processes in air at temperatures in the range 350–580°C. Y0.8Ca0.2BaCoO7 + δ has been found to absorb the largest amount of oxygen: 0.52 wt % (325 μmol O/g). The incorporation of calcium and iron into the structure of the YBaCo4O7 + δ cobaltite has been shown to shift the oxygen exchange process to higher temperatures and increase the oxygen storage capacity of the material.
作者简介
D. Turkin
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia
K. Tolstov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia
M. Yurchenko
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia
A. Suntsov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia
V. Kozhevnikov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: turkin@ihim.uran.ru
620108, Yekaterinburg, Russia
参考
- Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. Perovskite Oxides for Application in Thermochemical Air Separation and Oxygen Storage // J. Mater. Chem. A. 2016. V. 4. № 35. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
- Tescari S., Agrafiotis C., Breuer S., Oliveira, Neises-von Puttkamer M., Roeb M., Sattler C. Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
- Kodama T., Gokon N. Thermochemical Cycles for High-Temperature Solar Hydrogen Production // Chem. Rev. 2007. V. 107. № 10. P. 4048–4077. https://doi.org/10.1021/cr050188a
- Гилев А.Р., Киселев Е.А., Черепанов В.А. Влияние содержания кобальта на физико-химические свойства твердых растворов La1.5Sr0.5Ni1 – yCoyO4 + δ // Журн. физ. химии. 2020. Т. 94. № 12. С. 1828–1835. https://doi.org/10.31857/S0044453720120110
- Головачев И.Б., Трушников А.А., Волкова Н.Е., Аксенова Т.В., Черепанов В.А. Кристаллическая структура и кислородная нестехиометрия твердых растворов Ba0.9Ln0.1Fe1 – yCoyO3 – δ (Ln = Nd, Sm, Eu) // Журн. неорган. химии. 2022. Т. 67. № 6. С. 686–692. https://doi.org/10.31857/S0044457X22060095
- Федорова О.М., Ведмидь Л.Б., Димитров В.М. Влияние давления кислорода на термодинамическую стабильность Nd0.85Ba0.15MnO3 // Неорган. материалы. 2019. Т. 55. № 10. С. 1087–1091. https://doi.org/10.1134/S0002337X19100038
- Колотыгин В.А., Вискуп А.П., Пивак Е.В., Хартон Н.В. Смешанная ионно-электронная проводимость перовскитоподобных твердых растворов Ba1 – xSrx-Fe1 – yTiyO3 – δ и BaTi0.5Fe0.5 – zCezO3 – δ // Электрохимия. 2020. Т. 56. № 2. С. 119–126. https://doi.org/10.31857/S0424857020020061
- Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. Oxygen Nonstoichiometry in YBaCo4O7 + δ: Large Low-Temperature Oxygen Absorption/Desorption Capability // Chem. Mater. 2006. V. 18. № 2. P. 490–494. https://doi.org/10.1021/cm0523081
- Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. Oxygen Adsorption Properties of YBaCo4O7-Type Compounds // Solid State Ionics. 2006. V. 177. № 7–8. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
- Chen T., Hasegawa T., Asakura Y., Kakihana M., Motohashi T., Yin S. Improvement of the Oxygen Storage/Release Speed of YBaCo4O7 + δ Synthesized by a Glycine-Complex Decomposition Method // ACS Appl. Mater. Interfaces. 2021. V. 13. № 43. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
- Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. X-ray Absorption Fine Structure Analysis of Local Structure of CeO2–ZrO2 Mixed Oxides with the Same Composition Ratio (Ce/Zr = 1) // Catal. Today. 2002. V. 74. № 3–4. P. 225–234. https://doi.org/10.1016/S0920-5861(02)00025-1
- Kaspar J., Fornasiero P. Nanostructured Materials for Advanced Automotive De-pollution Catalysts // J. Solid State Chem. 2003. V. 171. № 1–2. P. 19–29. https://doi.org/10.1016/S0022-4596(02)00141-X
- Räsänen S., Yamauchi H., Karppinen M. Oxygen Absorption Capability of YBaCo4O7 + δ // Chem. Lett. 2008. V. 37. № 6. P. 638–639. https://doi.org/10.1246/cl.2008.638
- Wang S., Hao H., Zhu B., Jia J., Hu X. Modifying the Oxygen Adsorption Properties of YBaCo4O7 by Ca, Al, and Fe Doping // J. Mater. Sci. 2006. V. 43. № 15. P. 5385–5389. https://doi.org/10.1007/s10853-008-2806-8
- Zhang K., Zhu Z., Ran R., Shao Z., Jin W., Liu S. Layered Perovskite Y1−xCaxBaCo4O7+δ as Ceramic Membranes for Oxygen Separation // J. Alloys Compd. 2010. V. 492. № 1–2. P. 552–558. https://doi.org/10.1016/j.jallcom.2009.11.173
- Parkkima O., Yamauchi H., Karppinen M. Oxygen Storage Capacity and Phase Stability of Variously Substituted YBaCo4O7 + δ // Chem. Mater. 2013. V. 25. № 4. P. 599–604. https://doi.org/10.1021/cm3038729
- Hao H., He Q., Cheng Y., Zhao L. Oxygen Adsorption and Electronic Transport Properties of Fe-Substituted YBaCo4O7 Compounds // Mater. Res. Bull. 2014. V. 53. P. 84–88. https://doi.org/10.1016/j.materresbull.2014.01.042
- Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. Uncommon Oxygen Intake/Release Capability of Layered Cobalt Oxides, REBaCo4O7 + δ: Novel Oxygen-Storage Materials // Mater. Sci. Eng. B. 2008. V. 148. № 1–3. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
- Räsänen S., Parkkima O., Rautama E.-L., Yamauchi H., Karppinen M. Ga-for-Co Substitution in YBaCo4O7 + δ: Effect on High-Temperature Stability and Oxygen-Storage Capacity // Solid State Ionics. 2012. V. 208. P. 31–35. https://doi.org/10.1016/j.ssi.2011.11.028
- Räsänen S., Motohashi T., Yamauchi H., Karppinen M. Stability and Oxygen-Storage Characteristics of Al-Substituted YBaCo4O7 + δ // J. Solid State Chem. 2010. V. 183. № 3. P. 692–695. https://doi.org/10.1016/j.jssc.2010.01.010
- Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. Oxygen Exchange and Phase Stability of Y0.8Ca0.2BaCo4–xMxO7+δ (M = Fe, Ga, Al) // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
- Avci S., Chmaissem O., Zheng H., Hug A., Manuel P., Mitchell J.F. Oxygen Stoichiometry in the Geometrically Frustrated Kagomé System YBaCo4O7+δ: Impact on Phase Behavior and Magnetism // Chem. Mater. 2013. V. 25. № 21. P. 4188–4196. https://doi.org/10.1021/cm401710b
- Lai K.-L., Manthiram A. Phase Stability, Oxygen-Storage Capability, and Electrocatalytic Activity in Solid Oxide Fuel Cells of (Y,In,Ca)BaCo4–yGayO7+δ // Chem. Mater. 2016. V. 28. № 24. P. 9077–9087. https://doi.org/10.1021/acs.chemmater.6b04122
- Rodríguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction // Physica B. 1993. V. 192. № 1–2. P. 55–59. https://doi.org/10.1016/0921-4526(93)90108-I
- Valldor M., Andersson M. The Structure of the New Compound YBaCo4O7 with a Magnetic Feature // Solid State Sci. 2002. V. 4. № 7. P. 923–931. https://doi.org/10.1016/S1293-2558(02)01342-0
- Caignaert V., Pralong V., Hardy V., Ritter C., Raveau B. Magnetic Structure of CaBaCo4O7: Lifting of Geometrical Frustration towards Ferrimagnetism // Phys. Rev. B: Condens. Matter. 2010. V. 81. № 9. P. 094417. https://doi.org/10.1103/PhysRevB.81.094417
补充文件
