Thermoluminescence of Calcium Tungstate Containing Oxygen Vacancies
- Authors: Sokolenko E.V.1, Buyanova E.S.2, Mikhailovskaya Z.A.3,4, Slyusarev G.V.1
-
Affiliations:
- North-Caucasus Federal University
- Ural Federal University named after the First President of Russia B.N. Yeltsin
- Eltsin Ural Federal University, Institute of Natural Sciences and Mathematics
- Zavaritskii Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences
- Issue: Vol 59, No 9 (2023)
- Pages: 1004-1009
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/249389
- DOI: https://doi.org/10.31857/S0002337X23090130
- EDN: https://elibrary.ru/GBRLSN
- ID: 249389
Cite item
Abstract
We report first principles quantum-chemical calculations of the electronic structure of pure CaWO4 and CaWO4 containing oxygen vacancies. The calculation results are compared to values extracted from experimental thermoluminescence data. The influence of oxygen vacancies and structural disorder shows up as the presence of additional levels in the band gap of the material.
About the authors
E. V. Sokolenko
North-Caucasus Federal University
Email: sokolenko-ev-svis@rambler.ru
355017, Stavropol, Russia
E. S. Buyanova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: a020294@mail.ru
Yekaterinburg, 620002 Russia
Z. A. Mikhailovskaya
Eltsin Ural Federal University, Institute of Natural Sciences and Mathematics; Zavaritskii Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences
Email: kaimi-olga@mail.ru
620000, Yekaterinburg, Russia; 620110, Yekaterinburg, Russia
G. V. Slyusarev
North-Caucasus Federal University
Author for correspondence.
Email: sokolenko-ev-svis@rambler.ru
355017, Stavropol, Russia
References
- Spassky D., Mikhailin V., Nazarov M., Ahmad-Fauzi M.N., Zhbanov A. Luminescence and Energy Transfer Mechanisms in CaWO4 Single Crystals // J. Lumin. 2012. V. 132. P. 2753–2762. https://doi.org/10.1016/j.jlumin.2012.05.028
- Ninkovic J., Angloher G., Bucci C., Cozzini C., Frank T., Hauff D., Kraus H., Majorovits B., Mikhailik V., Petricca F., Pröbst F., Ramachers Y., Rau W., Seidel W., Uchaikin S. CaWO4 Crystals as Scintillators for Cryogenic Dark Matter Search // Nucl. Instrum. Methods Phys. Res. Sect. A. 2005. V. 537. P. 339–343. https://doi.org/10.1016/j.nima.2004.08.039
- Michail C., Valais I., Fountos G., Bakas A., Fountzoula C., Kalyvas N., Karabotsos A., Sianoudis I., Kandarakis I. Luminescence Efficiency of Calcium Tungstate (CaWO4) under X-ray Radiation: Comparison with Gd2O2S:Tb // Meas. 2018. V. 120. P. 213–220. https://doi.org/10.1016/j.measurement.2018.02.027
- Mikhailik V.B., Kraus H., Miller G., Mykhaylyk M.S., Wahl D. Luminescence of CaWO4, CaMoO4, and Z-nWO4 Scintillating Crystals under Different Excitations // J. Appl. Phys. 2005. V. 97. P. 083523-1–083535-8. https://doi.org/10.1063/1.1872198
- Mork V., Namozov B., Yaroshev1ch N. Complex Oxides: Electron Excitations and their Relaxation // Radiat. Meas. 1995. V. 24. № 4. P. 371–374.
- Li Y., Sun L., Wang Z., Wang S., Liu X., Wang Y. Investigation of Oxygen Vacancy and Photoluminescence in Calcium Tungstate Nanophosphors with Different Particle Sizes // Mater. Res. Bull. 2014. V. 50. P. 36–41. https://doi.org/10.1016/j.materresbull.2013.10.022
- Du P., Wu S., Yu J.S. Synthesis, Electronic Structure and Luminescence Properties of Color-Controllable Dy3+/Eu3+-Codoped CaWO4 Phosphors // J. Lumin. 2016. V. 173. P. 192–198. https://doi.org/10.1016/j.jlumin.2015.12.014
- Evarestov R.A., Kalinko A., Kuzmin A., Losev M., Purans J. First-Principles LCAO Calculations on 5d Transition Metal Oxides: Electronic and Phonon Properties // Integr. Ferroelectr. 2009. V. 108. P. 1–10. https://doi.org/10.1080/10584580903323990
- Shao Z., Zhang Q., Liu T., Chen J. First-Principles Study on the Electronic Structure of CaWO4 Crystals Containing the F-Type Centers // Solid State Commun. 2008. V. 146. P. 258–260. https://doi.org/10.1016/j.ssc.2008.02.014
- Shao Z., Zhang Q., Liu T., Chen J. Computer Study of Intrinsic Defects in CaWO4 // Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. V. 266. P. 797–801. https://doi.org/10.1016/j.nimb.2008.01.018
- Shao Z., Zhang Q., Liu T. First-principles Study on Electronic Structure and Absorption Spectra for the CaWO4 Crystal with Oxygen Vacancy // Comput. Mater. Sci. 2008. V. 43. P. 1018–1021. https://doi.org/10.1016/j.commatsci.2008.02.013
- Afanasiev P. Non-Aqueous Metathesis as a General Approach to Prepare Nanodispersed Materials: Case Study of Scheelites // J. Solid State Chem. 2015. V. 229. P. 112–123. https://doi.org/10.1016/j.jssc.2015.05.006
- Carvalho I.P., Lima A.F., Lalic M.V. Theoretical Study of Electronic and Optical Properties of the Scheelite MWO4 (M = Ca, Sr or Ba) Compounds by Applying the Modified Becke-Johnson Exchange-correlation Potential // Opt. Mater. 2019. V. 92. P. 187–194. https://doi.org/10.1016/j.optmat.2019.04.026
- Orhan E., Anicete-Santos M., Maurera M.A.M.A., Pontes F.M., Souza A.G., Andrės J., Beltrán A., Varela J.A., Pizani P.S., Taft C.A., Longo E. Towards an Insight on the Photoluminescence of Disordered CaWO4 from a Joint Experimental and Theoretical Analysis // J. Solid State Chem. 2005. V. 178. P. 1284–1291. https://doi.org/10.1016/j.jssc.2004.12.038
- Treadway M.J., Powell R.C. Luminescence of Calcium Tungstate Crystals // J. Chem. Phys. 1974. V. 61. P. 4003–4011. https://doi.org/10.1063/1.1681693
- Murk V., Nikl M., Mihokova E., Nitsch K. A Study of Electron Excitations in CaWO4 and PbWO4 Single Crystals // J. Phys. Condens. Matter. 1997. V. 9. P. 249–256. https://doi.org/10.1088/0953-8984/9/1/026
- Mikhailik V.B., Kraus H., Wahl D., Itoh M., Koike M., Bailiff I.K. One- and Two-Photon Excited Luminescence and Band-Gap Assignment in CaWO4 // Phys. Rev. B. 2004. V. 69. P. 205110.
- Gouveia A.F., Assis M., Ribeiro L.K., Lima A.E.B., de Oliveira Gomes E., Souza D., Galvao Y.G., Rosa I.L.V., da Luz Jr. G.E., Guillamon E., Longo E., Andres J., San-Miguel M.A. Photoluminescence Emissions of Ca1–xW-O4:xEu3+: Bridging between Experiment and DFT Calculations // J. Rare Earths. 2022. V. 40. P. 1527–1534. https://doi.org/10.1016/j.jre.2021.08.023
- Giannozzi P. et al. QUANTUM ESPRESSO: a Modular and Opensource Software Project for Quantum Simulations of Materials // J. Phys.: Condens. Matter. 2009. V. 21. P. 395502. https://doi.org/10.1088/0953-8984/21/39/395502
- Fletcher R. Practical Methods of Optimization. N. Y.: Wiley, 1987.
- Синельников Б.М., Соколенко Е.В., Звеков В.Ю. Природа центров “зеленой” люминесценции в шеелите // Неорган. материалы. 1996. Т. 32. № 9. С. 1139–1141.
- Соколенко Е.В., Жуковский В.М., Буянова Е.С., Краснобаев Я.А. Люминесцентные свойства разупорядоченных кислородом вольфраматов со структурой шеелита: II. Термолюминесценция // Неорган. материалы. 1998. Т. 34. № 5. С. 616–618.
- Blistanov A.A., Zakutaǐlov K.V., Ivanov M.A., Kvyat E.V., Klassen A.V., Kochurikhin V.V., Yakimova I.O. Defects in Calcium Tungstate Crystals // Cryst. Rep. 2006. V. 51. № 4. P. 661–663. https://doi.org/10.1134/S1063774506040201
- Murk V., Nikl M., Mihokova E., Nitsch K. A Study of Electron Excitations in CaWO4 and PbWO4 Single Crystals // J. Phys.: Condens. Matter. 1997. V. 9. P. 249–256.
- Christofilos D., Ves S., Kourouklis G. Pressure Induced Phase Transitions in Alkaline Earth Tungstates A // Phys. Status Solidi B. 1996. V. 198. P. 539–544.
Supplementary files
