Preparation of Molybdenum–Tungsten Alloy Powders via Magnesium and Calcium Vapor Reduction of Oxide Compounds
- Authors: Kolosov V.N.1, Miroshnichenko M.N.1, Prokhorova T.Y.1
-
Affiliations:
- Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia
- Issue: Vol 59, No 9 (2023)
- Pages: 980-988
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/249384
- DOI: https://doi.org/10.31857/S0002337X23090075
- EDN: https://elibrary.ru/HWXXJG
- ID: 249384
Cite item
Abstract
We report the preparation of molybdenum–tungsten alloy powders via magnesium and calcium vapor reduction of the Mo0.3W0.7O3, MgМо0.7W0.3O4, and CaМо0.7W0.3O4 compounds in the temperature range 750–880°C at residual pressures in the reactor from 5 to 15 kPa. The specific surface area of the Mo–W alloy powders prepared by reducing Mo0.3W0.7O3 slightly exceeds that of the mixture of metal powders obtained by reducing a mixture of WO3 and MoO3 under similar conditions. The specific surface area of the Mo–W alloy powders prepared via magnesium vapor reduction of the CaМо0.7W0.3O4 and MgМо0.7W0.3O4 compounds exceeds that in the case of calcium vapor reduction. We have obtained molybdenum–tungsten alloy powders having lattice parameters of 0.3153 ± 0.0001 and 0.3160 ± 0.0001 nm and ranging in specific surface area from 9 to 22 m2/g. The average crystallite size of the alloys, evaluated using the Scherrer formula, lies in the range 12–35 nm. The powders have a mesoporous structure.
Keywords
About the authors
V. N. Kolosov
Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia
Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а
M. N. Miroshnichenko
Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia
Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а
T. Yu. Prokhorova
Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 184209, Akademgorodok, Apatity, Murmansk region, Russia
Author for correspondence.
Email: v.kolosov@ksc.ru
Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а
References
- Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. N.Y.: Kluwer Academics, 1999. 288 p.
- Shields J.A. Applications of Molybdenum Metal and Its Alloys. L.: IMOA, 2013. 42 p.
- Naidu S.V.N., Sriramamurthy A.M., Rao P.R. The Mo–W (Molybdenum-Tungsten) System // Bull. Alloy Phase Diagrams. 1984. V. 5. № 2. P. 177–180. https://doi.org/10.1007/bf02868956
- Sahoo P.K., Srivastava S.K., Kamal S.S.K., Durai L. Consolidation Behavior of W–20–40 wt % Mo Nanoalloys Synthesized by Thermal Decomposition Method // Int. J. Refract. Met. Hard Mater. 2015. V. 51. P. 124–129. https://doi.org/10.1016/j.ijrmhm.2015.03.008
- Zhang H., Zhang G.-H. Preparation of Ultrafine Tungsten-Molybdenum Composite Powder and Its Sintering Behavior // Met. Mater. Int. 2021. V. 27. P. 1649–1661. https://doi.org/10.1007/s12540-019-00581-z
- Chakraborty S., Banerjee S., Sanyal G. et al. Studies on the Synthesis of Mo-30 wt % W Alloy by Non-conventional Approaches // J. Alloys Compd. 2010. V. 501. № 2. P. 211–217. https://doi.org/10.1016/j.jallcom.2010.04.114
- Srivastav A.K., Chawake N., Yadav D. et al. Localized Pore Evolution Assisted Densification During Spark Plasma Sintering of Nanocrystalline W–5 wt % Mo Alloy // Scr. Mater. 2019. V. 159. P. 41–45. https://doi.org/10.1016/j.scriptamat.2018.09.013
- Liu H.-X., Yang Y.-F., Cai Y.-F. et al. Prediction of Sintered Density of Binary W(Mo) Alloys Using Machine Learning // Rare Metals. 2023. V. 42. P. 2713–2724. https://doi.org/10.1007/s12598-022-02238-0
- Hu P., Chen T., Li X. et al. Ultrafast Synthesis of Nanocrystalline Molybdenum Powder by Thermal Plasma and Its Sintering Behavior // Int. J. Refract. Met. Hard Mater. 2019. V. 83. P. 104969(1)–104969(8). https://doi.org/10.1016/j.ijrmhm.2019.104969
- Gonzalez G., Sagarzazu A., Villalba R., Ochoa J. Comparative Study of NiW, NiMo and MoW Prepared by Mechanical Alloying // J. Alloys Compd. 2007. V. 434–435. P. 525–529. https://doi.org/10.1016/j.jallcom.2006.08.155
- Srivastav A.K., Murty B.S. Dilatometric Analysis on Shrinkage Behavior during Non-Isothermal Sintering of Nanocrystalline Tungsten Mechanically Alloyed with Molybdenum // J. Alloys Compd. 2012. V. 536. № 1–2. P. 41–44. https://doi.org/10.1016/j.jallcom.2011.12.067
- Ohser-Wiedemann R., Martin U., Müller A., Schreiber G. Spark Plasma Sintering of Mo–W Powders Prepared by Mechanical Alloying // J. Alloys Compd. 2013. V. 560. P. 27–32. https://doi.org/10.1016/j.jallcom.2013.01.142
- Paul B., Jain D., Chakraborty S.P. et al. Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30 wt % W // Thermochim. Acta. 2011. V. 512. № 1–2. P. 134–141. https://doi.org/10.1016/j.tca.2010.09.015
- Chen Q., Liang S., Zhang J. et al. Preparation and characterization of WMo Solid Solution Nanopowders with a Wide Composition Range // J. Alloys Compd. 2020. V. 823. P. 153760. https://doi.org/10.1016/j.jallcom.2020.153760
- Chen Q., Liang S., Li B. et al. Sol–Gel Synthesis and Characterization of Tungsten-Molybdenum Solid Solution Nanoparticles // Int. J. Refractory Metals and Hard Mater. 2021. V. 100. P. 105668. https://doi.org/10.1016/j.ijrmhm.2021.105668
- Мирошниченко М.Н., Колосов В.Н., Макарова Т.И., Орлов В.М. Синтез молибдатов и вольфраматов кальция и магния // Изв. СПбГТИ (ТУ). 2017. № 38 (64). С. 44–47. 1998984-9.2017.38https://doi.org/10.15217/issn
- Орлов В.М., Колосов В.Н. Магниетермическое восстановление оксидных соединений вольфрама и молибдена // Докл. РАН. 2016. Т. 468. № 3. С. 288–292. https://doi.org/10.7868/S0869565216150147
- Колосов В.Н., Орлов В.М., Мирошниченко М.Н. Исследование восстановления кислородных соединений металлов V и VI групп парами кальция // Неорган. материалы. 2020. Т. 56. № 1. С. 37–43. https://doi.org/10.1134/S0002337X20010066
- Cullity B.D., Stock S.R. Elements of X-Ray Diffraction. Englewood Cliffs: Prentice-Hall, 2001. 3rd ed.
- Колосов В.Н., Орлов В.М. Электронно-опосредованные реакции при металлотермическом восстановлении оксидных соединений молибдена и вольфрама // Докл. РАН. 2019. Т. 484. № 4. С. 447–450. https://doi.org/10.31857/S0869-56524844447-450
- Van Arkel A.E. A Simple Method for Increase of Accuracy in Debye Scherrer Technique // Z. Kristallogr. 1928. V. 67. P. 235–238.
- Taylor A., Doyle N.J. The Constitution Diagram of the Tungsten-Molybdenum-Osmium System // J. Less-Common Met. 1965. V. 9. № 1–2. P. 190–205. https://doi.org/10. 1016.0022-5088(65)90096-2
- Tran C.C., Han Y., Garcia-Perez M., Kaliaguine S. Synergistic Effect of Mo-W Carbides on Selective Hydrodeoxygenation of Guaiacol to Oxygen-Free Aromatic Hydrocarbons // Catal. Sci. Technol. 2019. V. 9. P. 1387–1397. https://doi.org/10.1039/c8cy02184h
- Tran C.C., Mohan O., Banerjee A. et al. A Combined Experimental and DFT Investigation of Selective Hydrodeoxygenation of Guaiacol over Bimetallic Carbide // Energy Fuels. 2020. V. 34. P. 16265–16273. https://doi.org/10.1021/acs.energyfuels.0c03102
- Mehdad A., Jentoft R.E., Jentof F.C. Single-Phase Mixed Molybdenum-Tungsten Carbides: Synthesis, Characterization and Catalytic Activity for Toluene Conversion // Catal. Today. 2019. V. 323. № 2. P. 112–122. https://doi.org/10.1016/j.cattod.2018.06.037
- Li S., Zhang Y., Han F. et al. Bimetallic Molybdenum-Tungsten Carbide/Reduced Graphene Oxide Hybrid Promoted Pt Catalyst with Enhanced Electrocatalytic Activity and Stability for Direct Methanol Fuel Cells // Appl. Surf. Sci. 2022. V. 600. P. 154134. https://doi.org/10.1016/j.apsusc.2022.154134
Supplementary files
