Luminescence of Thioglycolic Acid-Passivated PbS Quantum Dots in the Presence of Potassium Iodide
- 作者: Grevtseva I.G.1, Chirkov K.S.1, Ovchinnikov O.V.1, Smirnov M.S.1
-
隶属关系:
- Voronezh State University
- 期: 卷 59, 编号 10 (2023)
- 页面: 1079-1088
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/249378
- DOI: https://doi.org/10.31857/S0002337X23100044
- EDN: https://elibrary.ru/APOQIT
- ID: 249378
如何引用文章
详细
In this paper, we discuss general trends in the IR luminescence of colloidal PbS quantum dots 3 nm in average size, capped with thioglycolic acid molecules (PbS/TGA QDs). Treatment of the PbS/TGA QDs with a KI solution has been shown to cause a shift of a composite luminescence band peaking at 1120 nm to shorter wavelengths, to 1060 nm; an increase in the quantum yield of its shorter wavelength component, related to excitonic emission, from 1 to 10%; and quenching of its longer wavelength component, due to radiative recombination at defect levels. In this process, the cubic structure of PbS undergoes no changes. The average size of the PbS/TGA QDs has been shown to decrease slightly, by 0.2–0.3 nm. The conclusion has been drawn that the increase in the quantum yield of excitonic emission from the PbS/TGA QDs as a result of KI treatment is due to the more efficient passivation of interfacial defects, which act as both recombination luminescence and nonradiative carrier recombination channels. Using thermoluminescence in the temperature range from 80 to 350 K, we have demonstrated the presence of two types of shallow localized states, at 0.17- and 0.25-eV depths, whose density is only slightly sensitive to treatment of the PbS/TGA QDs with a KI solution. We assume that some of the traps identified are due to native defects in the nanocrystals—interstitial lead and sulfur ions—rather than to dangling bonds of surface lead and sulfur atoms.
作者简介
I. Grevtseva
Voronezh State University
Email: smirnov_m_s@mail.ru
394006, Voronezh, Russia
K. Chirkov
Voronezh State University
Email: smirnov_m_s@mail.ru
394006, Voronezh, Russia
O. Ovchinnikov
Voronezh State University
Email: smirnov_m_s@mail.ru
394006, Voronezh, Russia
M. Smirnov
Voronezh State University
编辑信件的主要联系方式.
Email: smirnov_m_s@mail.ru
394006, Voronezh, Russia
参考
- Shehab M., Ebrahim S., Soliman M. Graphene Quantum Dots Prepared from Glucose as Optical Sensor for Glucose // J. Lumin. 2017. V. 184. P. 110–116. https://doi.org/10.1016/j.jlumin.2016.12.006
- Chen F., Lin Q., Shen H., Tang A. Blue Quantum Dot-Based Electroluminescent Light-Emitting Diodes // Mater. Chem. Front. 2020. V. 4. P. 1340–1365. https://doi.org/10.1039/D0QM00029A
- Bai Z., Ji W., Han D., Chen L., Chen B., Shen H., Zou B., Zhong H. Hydroxyl-Terminated CuInS2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes // Chem. Mater. 2016. P. 28. № 4. P. 1085–1091. https://doi.org/10.1021/acs.chemmater.5b04480
- Peng Y., Wang G., Yuan C., He J., Ye S., Luo X. Influences of Oxygen Vacancies on the Enhanced Nonlinear Optical Properties of Confined ZnO Quantum Dots // J. Alloys Compd. 2018. V. 739. P. 345–352. https://doi.org/10.1016/j.jallcom.2017.12.250
- Xu G., Zeng S., Swihart M., Yong K.-T., Prasad P. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine // Chem. Rev. 2016. V. 116. P. 12234–12327. https://doi.org/10.1021/acs.chemrev.6b00290
- Zebibula A., Alifu N., Xia L., Sun C., Yu X., Xue D., Liu L., Li G., Qian J. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging // Adv. Funct. Mater. 2018. V. 28. P. 1703451. https://doi.org/10.1002/adfm.201703451
- Yin X., Zhang C., Guo Y., Yang Y., Xing Y., Que W. PbS QD-Based Photodetectors: Future-Oriented Near-Infrared Detection Technology // J. Mater. Chem. C. 2021. V. 9. P. 417–438. https://doi.org/10.1039/D0TC04612D
- Scanlon W.W. Recent Advances in the Optical and Electronic Properties of PbS, PbSe, PbTe and Their Alloys // J. Phys. Chem. Solids. 1959. V. 8. P. 423–428. https://doi.org/10.1016/0022-3697(59)90379-8
- Warner J.H., Thomsen E., Watt A.R., Heckenberg N.R., Rubinsztein-Dunlop H. Time-Resolved Photoluminescence Spectroscopy of Ligand-Capped PbS Nanocrystals // Nanotech. 2005. V. 16. P. 175–179. https://doi.org/10.1088/0957-4484/16/2/001
- Torres-Gomez N., Garcia-Gutierrez D.F., Lara-Canche A.R., Triana-Cruz L., Arizpe-Zapata J.A., Garcia-Gutierrez D.I. Absorption and Emission in the Visible Range by Ultra-Small PbS Quantum Dots in the Strong Quantum Confinement Regime with S-Terminated Surfaces Capped with Diphenylphosphine // J. Alloys Compd. 2021. V. 860. P. 158443–158454. https://doi.org/10.1016/j.jallcom.2020.158443
- Kim D., Kuwabara T., Nakayama M. Photoluminescence Properties Related to Localized States in Colloidal PbS Quantum Dots // J. Lumin. 2006. V. 119–120. P. 214–218. https://doi.org/10.1016/j.jlumin.2005.12.033
- Gilmore R.H., Liu Y., Shcherbakov-Wu W., Dahod N.S., Lee E.M.Y., Weidman M.C., Jean H.Li.J., Bulovic V., Willard A.P., Grossman J.C., Tisdale W.A. Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids // Matter. 2019. V. 1. № 1. P. 250–265. https://doi.org/10.1016/j.matt.2019.05.015
- Nakashima S., Hoshino A., Cai J., Mukai K. Thiol-Stabilized PbS Quantum Dots With Stable Luminescence in the Infrared Spectral Range // J. Cryst. Growth. 2013. V. 378 P. 542–545. https://doi.org/10.1016/j.jcrysgro.2012.11.024
- Loiko P.A., Rachkovskaya G.E., Zacharevich G.B., Yumashev K.V. Wavelength-Tunable Absorption and Luminescence of SiO2–Al2O3–ZnO–Na2O–K2O–NaF Glasses With PbS Quantum Dots // J. Lumin. 2013. V. 143. P. 418–422. https://doi.org/10.1016/j.jlumin.2013.05.057
- Kolobkova E., Lipatova Z., Abdrshin A., Nikonorov N. Luminescent Properties of Fluorine Phosphate Glasses Doped with PbSe and PbS Quantum Dots // Opt. Mater. 2017. V. 65. P. 124–128. https://doi.org/10.1016/j.optmat.2016.09.033
- Sadovnikov S.I., Rempel A.A. Nonstoichiometric Distribution of Sulfur Atoms in Lead Sulfide Structure // Dokl. Phys. Chem. 2009. V. 428. № 1. P. 167–171. https://doi.org/10.1134/S0012501609090024
- Hu L., Lei Q., Guan X., Patterson R., Yuan J., Lin C.-H., Kim J., Gang X., Younis A., Wu X., Liu X., Wan T., Chu D., Wu T., Huang S. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding // Adv. Sci. 2021. V. 8. P. 2003138. https://doi.org/10.1002/advs.202003138
- Stavrinadis A., Pradhan S., Papagiorgis P., Itskos G., Konstantatos G. Suppressing Deep Traps in PbS Colloidal Quantum Dots via Facile Iodide Substitutional Doping for Solar Cells with Efficiency >10% // ACS Energy Lett. 2017. V. 2. № 4. P. 739–744. https://doi.org/10.1021/acsenergylett.7b00091
- Ip A.H., Thon S.M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., Lavina L., Rollny L.R., Carey G.H., Fisher A., Kemp K.W., Kramer I.J., Ning Z., Labelle A.J., Chou K.W., Amassian A., Sargent E.H. Hybrid Passivated Colloidal Quantum Dot Solids // Nat. Nanotech. 2012. V. 7. P. 577–582. https://doi.org/10.1038/nnano.2012.127
- Li P., Lan Y., Zhang Q., Zhao Z., Pullerits T., Zheng K., Zhou Y. Iodinated SnO2 Quantum Dots: A Facile and Efficient Approach to Increase Solar Absorption for Visible-Light Photocatalysis // J. Phys. Chem. C. 2016. V. 120. № 17. P. 9253–9262. https://doi.org/10.1021/acs.jpcc.6b01530
- Dasog M., Bader K., Veinot J.G.C. Influence of Halides on the Optical Properties of Silicon Quantum Dots // Chem. Mater. 2015. V. 27. P. 1153–1156. https://doi.org/10.1021/acs.chemmater.5b00115
- Маскаева Л.Н., Марков В.Ф., Воронин В.И., Поздин А.В., Борисова Е.С., Анохина И.А. Структурные характеристики и фотоэлектрические свойства химически осажденных пленок PbS, легированных йодом // Неорган. материалы. 2023. Т. 59. № 4. С. 363–373. https://doi.org/10.31857/S0002337X23040061
- Smirnov M.S., Ovchinnikov O.V. IR luminescence Mechanism in Colloidal Ag2S Quantum Dots // J. Lumin. 2020. V. 227. P. 117526. https://doi.org/10.1016/j.jlumin.2020.117526
- Kondratenko T.S., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Vinokur Y.A. Size-Dependent Optical Properties of Colloidal CdS Quantum Dots Passivated by Thioglycolic Acid // Semiconductors. 2018. V. 52. № 9. P. 1137–1144. https://doi.org/10.1134/S1063782618090087
- Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., Kondratenko T.S., Perepelitsa A.S., Aslanov S.V., Khokhlov V.U., Tatyanina E.P., Matsukovich A.S. Effect of Thioglycolic Acid Molecules on Luminescence Properties of Ag2S Quantum Dots // Opt. Quant. Electron. 2020. V. 52. P. 198-1-23. https://doi.org/10.1007/s11082-020-02314-8
- Kedenburg S., Vieweg M., Gissibl T., Giessen H. Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-Infrared Spectral Region // Opt. Mater. Express. 2012. V. 2. № 11. P. 1588–1611. https://doi.org/10.18419/opus-5686
- van Leeuwen F.W.B., Cornelissen B., Caobelli F., Evangelista L., Rbah-Vidal L., Vecchio D., Xavier C., Barbet J., de Jong M. Generation of Fluorescently Labeled Tracers – which Features Influence the Translational Potential? // EJNMMI Radiopharm. Chem. 2017. V. 2. № 15. https://doi.org/10.1186/s41181-017-0034-8
- Kozma I.Z., Krok P., Riedle E. Direct Measurement of the Group-Velocity Mismatch and Derivation of the Refractive-Index Dispersion for a Variety of Solvents in the Ultraviolet // J. Opt. Soc. Am. B. 2005. V. 22. № 7. P. 1479–1485. https://doi.org/10.1364/JOSAB.22.001479
- Perepelitsa A.S., Smirnov M.S., Ovchinnikov O.V., Latyshev A.N., Kotko A.S. Thermostimulated Luminescence of Colloidal Ag2S Quantum Dots // J. Lumin. 2018. V. 198. P. 357–363. https://doi.org/10.1016/j.jlumin.2018.02.009
- Ovchinnikov O.V., Perepelitsa A.S., Smirnov M.S., Aslanov S.V. Control the Shallow Trap States Concentration During the Formation of Luminescent Ag2S and Ag2S/SiO2 Core/Shell Quantum Dots // J. Lumin. 2022. V. 243. P. 118616-1-7. https://doi.org/10.1016/j.jlumin.2021.118616
- Smirnov M.S., Buganov O.V., Tikhomirov S.A., Ovchinnikov O.V., Shabunya-Klyachkovskaya E.V., Grevtseva I.G., Kondratenko T.S. Decay of Electronic Excitations in Colloidal Thioglycolic Acid (TGA)-Capped CdS/ZnS Quantum Dots // J. Nanopart. Res. 2017. V. 19. № 11. P. 376-1-13. https://doi.org/10.1007/s11051-017-4067-4
- Hwang G.W., Kim D., Cordero J.M., Wilson M.W.B., Chuang C.-H.M., Grossman J.C., Bawendi M.G. Identifying and Eliminating Emissive Sub-bandgap States in Thin Films of PbS Nanocrystals // Adv. Mater. 2015. V. 27. P. 4481–4486. https://doi.org/10.1002/adma.201501156
- Giansante C., Infante I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective // J. Phys. Chem. Lett. 2017. V. 8. № 20. P. 5209–5215. https://doi.org/10.1021/acs.jpclett.7b02193
- Voznyy O., Thon S.M., Ip A.H., Sargent E.H. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots // J. Phys. Chem. Lett. 2013. V. 4. P. 987−992. https://doi.org/10.1021/jz400125r
- Sherrer P. Bestimmung der Grosse und der Inneren Struktur Con Kolloidteilchen Mittels Rontgenstrahlen // Nachr. Ges. Wiss. Gott. 1918. V. 26. P. 98–100.
- Гревцева И.Г., Овчинников О.В., Смирнов М.С., Чирков К.С. Рекомбинационная и экситонная люминесценция коллоидных квантовых точек PbS, покрытых молекулами тиогликолевой кислоты // Конденс. среды межфаз. границ. 2023. Т. 25. № 2. С. 182–189. https://doi.org/10.17308/kcmf.2023.25/11099
- Caram J.R., Bertram S.N., Utzat H., Hess W.R., Carr J.A., Bischof T.S., Beyler A.P., Wilson M.W.B., Bawendi M.G. PbS Nanocrystal Emission Is Governed by Multiple Emissive States // Nano Lett. 2016. V. 16. P. 6070–6077. https://doi.org/10.1021/acs.nanolett.6b02147
- Grevtseva I., Chevychelova T., Ovchinnikov O., Smirnov M., Kondratenko T., Khokhlov A., Astashkina M., Chirkov K. Size Effect Features and Mechanism of Luminescence of Colloidal PbS Quantum Dots, Passivated with Thioglicolic Acid // Opt. Quant. Electron. 2023. V. 55. № 433. https://doi.org/10.1007/s11082-023-04658-3
- Moreels I., Lambert K., Smeets D., De Muynck D., Nollet T., C. Martins J., Vanhaecke F., Vantomme A., Delerue C., Allan G., Hens Z. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots // ACS Nano. 2009. V. 3. № 10. P. 302–3030. https://doi.org/10.1021/nn900863a
补充文件
