Preparation, Absorption Spectra, and Luminescence Properties of Er2O3- and Yb2O3-Doped Oxyfluoride Glasses in the SrF2–SiO2–B2O3–Bi2O3–ZnO–Y2O3 System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Oxyfluoride glasses in the SrF2–SiO2–B2O3–Bi2O3–ZnO–Y2O3 system have been designed and prepared at various ratios of batch components, and we have studied absorption spectra and luminescence properties of Er2O3- and Yb2O3-doped glasses. According to X-ray diffraction data, all of the glasses are X-ray amorphous. We have determined their glass transition temperature (tg). Their local structure has been studied by IR spectroscopy and it has been shown that, independent of composition, the glasses contain complex polyborate anions formed by [BO3] and [BO4] groups. Bismuth is incorporated into the glass network to form Bi–O–Si bonds and network-formers in the form of [BiO6] groups.

About the authors

N. M. Kozhevnikova

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: nicas@binm.ru
670047, Ulan-Ude, Buryat Republic, Russia

References

  1. Kaewako J., Boonin K., Yasaka P. et al. Optical and Luminescence Characteristics of Eu3+ Doped Zinc Bismuth Borate (ZBB) Glasses for Red Emitting Device // Mater. Res. Bull. 2015. V. 71. P. 37–41.
  2. Fedorov P.P., Luginina A.A., Popov A.I. Transparent Oxyfluoride Glass Ceramics // J. Fluorine Chem. 2015. V. 172. P. 22–50.
  3. Gugov I., Mueller M., Ruessel C. Transparent Oxyfluoride Glass Ceramics Co-Doped with Er3+ and Yb3+ – Cristallization and Upconversion Spectroscopy // J. Solid State Chem. 2011. V. 184. P. 1001–1007.
  4. Rault G., Adam J.L., Smektala F., Lucas J. Fluoride Glass Compositions for Waveguide Applications // J. Fluorine Chem. 2001.V. 110. № 2. P. 165–173.
  5. Aseev V.A., Kolobkova E.V., Nekrasova Yu.A. et al. Oxyfluoride Glasses for Red Phosphors // Mater. Phys. Mech. 2013. V. 17. P. 135–141.
  6. Polishchuk S.A., Ignat,eva L.N., Marchenco Yu.V. et al. Oxyfluoride Glasses // Glass Phys. Chem. 2011. V. 37. № 3. P. 1–20.
  7. Лойко П.А., Рачковская Г.Е., Захаревич Г.Б. и др. Новые люминесцирующие оксифторидные стекла с ионами европия и иттербия // Стекло и керамика. 2014. № 2. С. 3–6.
  8. Laczka M., Stoch L., Gorecki J. Bismuth-Containing Glasses as Materials for Optoelectronics // J. Alloys Compd. 1992. V. 186. P. 279–291.
  9. Oprea I., Hesse H., Betler K. Optical Properties of Bismuth Borate Glasses // Opt. Mater. 2004. V. 26. P. 235–237.
  10. Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 269 с.
  11. Власов А.Г., Флоринская В.А., Венедиктов А.А. и др. Инфракрасные спектры неорганических стекол и кристаллов. Л.: Химия, 1972. 304 с.
  12. Bale S., Rahman S., Awasthi A.M., Sathe V. Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses // J. Alloys Compd. 2008. V. 460. P. 699–703.
  13. Yasaka P., Boonin K., Limsuwan P. et al. Physical, Structural and Luminescence Properties of ZnO–Bi2O3–B2O3 Glass System // Appl. Mech. Mater. 2013. V. 431. P. 8–13.
  14. Левицкий И.А., Дяденко М.В., Папко Л.Ф. Получение оптических стекол на основе системы BaO–La2O3–B2O3–TiO2–SiO2 // Стекло и керамика. 2011. № 10. С. 3–6.
  15. Князян Н.Б. Оксифторидные боросиликатные стекла // Сер. Химические и экологические технологии. 2012. Вып. 15. № 2. С. 1–23.
  16. Кузнецова Ю.О. Передача электронного возбуждения в ап-конверсионных наночастицах, содержащих редкоземельные ионы // Изв. Самарского науч. центра РАН. 2013. Т. 15. № 4. С. 112–115.
  17. Жукова Е.В., Сиротина В.А., Севостьянова Т.С. и др. Свинцовые оксифторидные боросиликатные стекла, активированные редкоземельными элементами // Успехи в химии и хим. технологии. 2016. Т. 30. № 3. С. 108–110.
  18. Овсянкин В.В., Феофилов П.П. Кооперативная сенсибилизация люминесценции в кристаллах, активированных редкоземельными ионами // Письма в ЖЭТФ. 1966. Т. 4. Вып. 11. С. 471–474.
  19. Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids // Chem. Rev. 2004. V. 104. № 1. P. 139–173.
  20. Казарян А.К., Тимофеев Ю.Р., Фок М.В. Антистоксовое преобразование излучения в люминофорах с редкоземельными ионами // Тр. ФИАН. 1986. Т. 175. С. 4–65.
  21. Крутько В.А., Рябова А.В., Комова М.Г., Волков В.В., Каргин Ю.Ф., Лощенов В.Б. Синтез и люминесценция ультрадисперсных соединений G11SiP3O26, Gd14B6Ge2O34, активированных ионами Er3+ и Yb3+, для диагностики рака // Неорган. материалы. 2013. Т. 49. № 1. С. 45–51. https://doi.org/10.7868/S0002337X13010041

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (188KB)
3.

Download (119KB)
4.

Download (221KB)
5.

Download (375KB)

Copyright (c) 2023 Н.М. Кожевникова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».