Defect Formation in Gd3AlxGa5–xO12 (x = 1–3) and Gd3Al2Ga3O12:Ce Crystals
- 作者: Kasimova V.M.1, Kozlova N.S.2, Zabelina E.V.1, Buzanov O.A.3, Bykov A.S.4, Skryleva E.A.5, Spassky D.A.4,6,7
-
隶属关系:
- MISiS National University of Science and Technology
- Moscow Institute of Steel and Alloys (National University of Science and Technology)
- JSC FOMOS-MATERIALS
- National University of Science and Technology MISIS
- National Research Technological University MISiS
- Skobeltsyn Research Institute of Nuclear Physics, Moscow State University
- Institute of Physics, University of Tartu
- 期: 卷 59, 编号 8 (2023)
- 页面: 871-877
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/231968
- DOI: https://doi.org/10.31857/S0002337X23080055
- EDN: https://elibrary.ru/TYUMRY
- ID: 231968
如何引用文章
详细
We present results of a detailed study of defect formation processes and their effect on the optical properties of gadolinium aluminum gallium garnet crystals with partial aluminum substitution for gallium in the cation sublattice—Gd3Al1Ga4O12 (Al : Ga = 1 : 4), Gd3Al2Ga3O12 (Al : Ga = 2 : 3), and Gd3Al3Ga2O12 (Al : Ga = 3 : 2) and cerium-doped crystals: Gd3Al2Ga3O12:Сe3+ (GAGG:Ce). X-ray photoelectron spectroscopy and X-ray fluorescence analysis data demonstrate gallium deficiency relative to the stoichiometric composition in all of the crystals studied. The results obtained are used to analyze processes underlying the formation of structural growth point defects in gadolinium aluminum gallium garnet crystals. F-centers have been shown to be the predominant point defect species. We also have demonstrated the formation of Schottky defects and V-centers. The formation of additional F-centers in cerium-doped garnet crystals is happening. The refractive indices and attenuation coefficients of the crystals have been shown to depend on the Al : Ga ratio and doping with cerium.
作者简介
V. Kasimova
MISiS National University of Science and Technology
Email: tatgolovina@mail.ru
俄罗斯联邦, 119049, Moscow, Russia
N. Kozlova
Moscow Institute of Steel and Alloys (National University of Science and Technology)
Email: apdemirov@gmail.com
119049, Moscow, Russia
E. Zabelina
MISiS National University of Science and Technology
Email: tatgolovina@mail.ru
俄罗斯联邦, 119049, Moscow, Russia
O. Buzanov
JSC FOMOS-MATERIALS
Email: kasimovavalya@mail.ru
俄罗斯联邦, 107023, Moscow
A. Bykov
National University of Science and Technology MISIS
Email: kasimova.vm@misis.ru
119049, Moscow, Russia
E. Skryleva
National Research Technological University MISiS
Email: syrtsova@ips.ac.ru
119049, Moscow, Russia
D. Spassky
National University of Science and Technology MISIS; Skobeltsyn Research Institute of Nuclear Physics, Moscow State University; Institute of Physics, University of Tartu
编辑信件的主要联系方式.
Email: kasimova.vm@misis.ru
119049, Moscow, Russia; 119991, Moscow, Russia; 50411, Tartu, Estonia
参考
- Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Yu., Yoshikawa A. 2-inch Size Single Crystal Growth and Scintillation Properties of New Scintillator; Ce:Gd3Al2Ga3O12 // IEEE NSS/MIC. 2011. P. 1927–1929. https://doi.org/10.1109/NSSMIC.2011.6154387
- Lecoq P. Development of New Scintillators for Medical Applications // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 809. P. 130. https://doi.org/10.1016/j.nima.2015.08.041
- Alenkov V., Buzanov O., Dosovitskiy G., Egorychev V., Fedorov A., Golutvin A., Guz Yu., Jacobsson R., Korjik M., Kozlov D., Mechinsky V., Schopper A., Semennikov A., Shatalov P., Shmanin E. Irradiation Studies of a Multi-Doped Gd3Al2Ga3O12 // Nucl. Instrum. Methods Phys. Res., Sect. A. 2019. V. 916. P. 226–229. https://doi.org/10.1016/j.nima.2018.11.101
- Martinazzoli L. Crystal Fibers for the LHCb Calorimeter Upgrade // IEEE Trans. Nucl. Sci. 2020. V. 67. № 6. P. 1003–1008. https://doi.org/10.1109/TNS.2020.2975570
- Dilillo G., Zampa N., Campana R., Fuschino F., Pauletta G., Rashevskaya I., Ambrosino F., Baruzzo M., Cauz D., Cirrincione D., Citossi M., Casa G. D., Di Ruzza B., Evangelista Y., Galgóczi G., Labanti C., Ripa J., Tommasino F., Verroi E., Fiore F., Vacchi A. Space Applications of GAGG:Ce Scintillators: a Study of Afterglow Emission by Proton Irradiation // Nucl. Instrum. Methods Phys. Res., Sect. B. 2022. V. 513. P. 33–43. https://doi.org/10.1016/j.nimb.2021.12.006
- Ляпидевский В.К. Сцинтилляционный метод детектирования излучений. М.: Изд-во МИФИ, 1981. 88 с.
- Kitaura M., Sato A., Kamada K., Ohnishi A., Sasaki M. Phosphorescence of Ce-Doped Gd3Al2Ga3O12 Crystals Studied Using Luminescence Spectroscopy // J. Appl. Phys. 2014. V. 115. № 8. P. 083517. https://doi.org/10.1063/1.4867315
- Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Yu., Fukabori A., Yoshikawa A. 2inch Diameter Single Crystal Growth and Scintillation Properties of Ce:Gd3Al2Ga3O12 // J. Cryst. Growth. 2012. V. 352. № 1. P. 88–90. https://doi.org/10.1016/j.jcrysgro.2011.11.085
- Tyagi M., Meng F., Koschan M., Donnald S.B., Rothfuss H., Melcher C.L. Effect of Codoping on Scintillation and Optical Properties of a Ce-Doped Gd3Ga3Al2O12 Scintillator // J. Phys. D: Appl. Phys. 2013. V. 46. № 47. P. 475302. https://doi.org/10.1088/0022-3727/46/47/475302
- Babin V., Bohacek P., Grigorjeva L., Kučera M., Nikl M., Zazubovich S., Zolotarjovs A. Effect of Mg2+ Ions Co-Doping on Luminescence and Defects Formation Processes in Gd3(Ga,Al)5O12:Ce Single Crystals // Opt. Mater. 2017. V. 66. P. 48–58. https://doi.org/10.1016/j.optmat.2017.01.039
- Теплякова Н.А., Смирнов М.В., Сидоров Н.В., Палатников М.Н. Дефекты и некоторые физические свойства номинально чистых и легированных цинком кристаллов ниобата лития // Физика твердого тела. 2021. Т. 63. № 8. С. 1132–1140.
- Арсеньев П.А., Ткачук Г.Н. Спектроскопические свойства ионов неодима в решетке кристаллов титаната гадолиния // Кристаллография. 2021. Т. 66. № 3. С. 458–460. https://doi.org/10.31857/S0023476121030048
- Блистанов А.А. Кристаллы квантовой и нелинейной оптики: учебное пособие. М.: МИСиС, 2007. 432 с.
- Fujimori K., Kitaura M., Taira Y., Fujimoto M., Zen H., Watanabe S., Kamada K., Okano Y., Katoh M., Hosaka M., Yamazaki J., Hirade T., Kobayashi Y., Ohnishi A. Visualizing Cation Vacancies in Ce:Gd3Al2Ga3O12 Scintillators by Gamma-Ray-Induced Positron Annihilation Lifetime Spectroscopy // Appl. Phys. Exp. 2020. V. 13. № 8. P. 085505. https://doi.org/10.35848/1882-0786/aba0dd
- Meng F. Development and Improvement of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators for Radiation Detectors by Codoping: PhD diss. Knoxville, 2015. 159 p.
- Bohacek P., Krasnikov A., Kučera M., Nikl M., Zazubovich S. Defects Creation in the Undoped Gd3(Ga,Al)5O12 Single Crystals and Ce3+-Doped Gd3(Ga,Al)5O12 Single Crystals and Epitaxial Films under Irradiation in the Gd3+-Related Absorption Bands // Opt. Mater. 2019. V. 88. P. 601–605. https://doi.org/10.1016/j.optmat.2018.12.033
- Yoshikawa A., Fujimoto Y., Yamaji A., Kurosawa S., Pejchal J., Sugiyama M., Wakahara S., Futami Y., Yokota Y., Kamada K., Yubuta K., Shishido T., Nikl M. Crystal Growth and Characterization of Ce:Gd3(Ga,Al)5O12 Single Crystal Using Floating Zone Method in Different O2 Partial Pressure // Opt. Mater. 2013. V. 35. № 11. P. 1882–1886. https://doi.org/10.1016/j.optmat.2013.02.021
- Кузьмичева Г.М., Козликин С.Н., Жариков Е.В., Калитин С.П., Осико В.В. Точечные дефекты в гадолиний-галлиевом гранате // Журн. неорган. химии. 1988. Т. 33. № 9. С. 2200–2204.
- Жариков Е.В., Лаптев В.В., Майер А.А., Осико В.В. Конкуренция катионов в октаэдрических положениях галлиевых гранатов // Изв. АН СССР. Неорган. материалы. 1984. Т. 20. № 6. С. 984–991.
- Komar J., Solarz P., Jeżowski A., Głowacki M., Berkowski M., Ryba-Romanowski W. Investigation of Intrinsic and Extrinsic Defects in Solid Solution Gd3(Al, Ga)5O12 Crystals Grown by the Czochralski Method // J. Alloys Compd. 2016. V. 688. P. 96–103. https://doi.org/10.1016/j.jallcom.2016.07.139
- Матковский А.О., Сугак Д.Ю., Улманис У.А., Савицкий В.Г. Центры окраски в редкоземельных галлиевых гранатах. Саласпилс: ЛАФИ, 1987. 42 с.
- Забелина Е.В., Козлова Н.С., Гореева Ж.А., Касимова В.М. Многоугловые спектрофотометрические методы отражения для определения коэффициентов преломления // Изв. вузов. МЭТ. 2019. Т. 22. № 3. С. 168–178. https://doi.org/10.17073/1609-3577-2019-3-168-178
- Lamoreaux R.H., Hildenbrand D.L., Brewer L. High-temperature Vaporization Behavior of Oxide II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg // J. Phys. Chem. Ref. Data. 1987. V. 16. № 3. P. 419–443. https://doi.org/10.1063/1.555799
- Physical and Scintillation Properties Furukawa Co [Электронный ресурс]. – 2014. – URL: http://furukawa-denshi.co.jp/cgi-bin/pdfdata/20140428162950.pdf (дата обращения: 06.01.2022).
- Spassky D., Fedyunin F., Rubtsova E., Tarabrina N., Morozov V., Dzhevakov P., Chernenko K., Kozlova N., Zabelina E., Kasimova V., Buzanov O. Structural, Optical and Luminescent Properties of Undoped Gd3AlxGa5–xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 Single Crystals // Opt. Mater. 2022. V. 25. P. 112079. https://doi.org/10.1016/j.optmat.2022.112079
- Li M., Meng M., Chen J. Abnormal Site Preference of Al and Ga in Gd3Al2.3Ga2.7O12:Ce Crystals // Phys. Status Solidi B. 2021. V. 258. P. 2000603. https://doi.org/10.1002/pssb.202000603
- Kanai T., Satoh M., Miura I. Characteristics of a Nonstoichiometric Gd3+δ(Al,Ga)5–δO12:Ce Garnet Scintillator // J. Am. Ceram. Soc. 2008. V. 91. № 2. P. 456–462. https://doi.org/10.1111/j.1551-2916.2007.02123.x
- Krsmanovic R., Morozov V.A., Lebedev O.I., Polizzi S., Speghini A., Bettinelli M., Van Tendeloo G. Structural and Luminescence Investigation on Gadolinium Gallium Garnet Nanocrystalline Powders Prepared by Solution Combustion Synthesis // Nanotechnology. 2007. V. 18. P. 325604. https://doi.org/10.1088/0957-4484/18/32/325604
- Касимова В.М., Козлова Н.С., Бузанов О.А., Забелина Е.В., Таргонский А.В., Рогачев А.В. Влияние частичного замещения галлия алюминием на свойства кристаллов гадолиний-алюминий-галлиевого граната // Неорган. материалы. 2022. Т. 58. № 3. С. 302–308. https://doi.org/10.31857/S0002337X2203006X
- Шаскольская М.П. Кристаллография. М.: Высш. шк., 1984. 376 с.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr. 1976. V. 32. № 5. P. 751–767. https://doi.org/10.1107/S0567739476001551
- Pujats A., Springis M. The F-type Centers in YAG Crystals // OPA. 2001. V. 155. № 1–4. P. 65–69. https://doi.org/10.1080/10420150108214094
- Полисадова Е.Ф., Тао Хан, Олешко В.И., Валиев Д.Т., Ваганов В.А., Шонши Д., Бураченко А.Г. Влияние концентрации церия на люминесцентные свойства Y3Al5O12:Ce при ультрафиолетовом возбуждении // Фундаментальные исследования. 2017. № 12-1. С. 103–109. https://doi.org/10.17513/fr.41987
- Зоренко Ю.В., Савчин В.П., Горбенко В.И., Возняк Т.И., Зоренко Т.Е., Пузиков В.М., Данько А.Я., Нижанковский С.В. Люминесценция и сцинтилляционные свойства монокристаллов и монокристаллических пленок Y3Al5O12:Cе // Физика твердого тела. 2011. Т. 53. № 8. С. 1542–1547. eLIBRARY ID: 20322140
