Self-Propagating High-Temperature Synthesis of a Ti–Al–Mn Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An alloy based on the Laves phase Ti(Mn0.75Al1.25) has been prepared by self-propagating high-temperature synthesis using a 34.8Ti + 45.2Al + 20Mn (at %) mixture. The relative density of the as-prepared samples has been shown to influence the phase composition of the alloy. In the case of a relative density of ~0.75, we obtained a single-phase intermetallic alloy with a porosity of 45%, containing ~2 wt % of Al2O3 as an impurity phase. Synthesis from a mixture with a relative density of 0.55 yielded a two-phase alloy containing a Laves phase and the τ-Ti(Al2.68Mn0.32) phase. The alloy was in a nonequilibrium state, and annealing at 1000°C for 3 h led to the formation of a single-phase alloy based on the Laves phase Ti(Mn0.75Al1.25). Its microhardness was determined to be 7.96 ± 0.8 GPa.

About the authors

P. A. Lazarev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

M. L. Busurina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

O. D. Boyarchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: busurina@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

D. Yu. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Email: vadchenko@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka

A. E. Sychev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: lazarev@ism.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

References

  1. Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications / Ed. Christoph L., Manfred P. Weinheim: WILEY-VCH Verlag, 2003. ISBN: 3-527-30534-3.
  2. Kunal K., Ramachandran R., Norman M. Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques // Prog. Aerospace Sci. 2012. V. 55. P. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001
  3. Yogesha B., Bhattacharya S. Superplastic Behavior of a Ti–Al–Mn Alloy // J. Manuf. Sci. Prod. 2008. V. 9. № 1–2. P. 81–86. https://doi.org/10.1515/IJMSP.2008.9.1-2.81
  4. Mikhaylovskaya A., Mosleh A., Kotov A., Kwame J., Pourcelot T., Golovin I., Portnoy V. Superplastic Deformation Behavior and Microstructure Evolution of near-α-Ti-Al-Mn Alloy // Mater. Sci. Eng: A. 2017. V. 708. P. 469–477. https://doi.org/10.1016/j.msea.2017.10.017
  5. Luzhnikov L., Moiseyev V. Alloys of the Ti–Al–Mn System // Met. Sci. Heat Treat. 1961. V. 3. P. 310–314. https://doi.org/10.1007/BF00810382
  6. Kim Y.W., Dimiduk D.M. Progress in the Understanding of Gamma Titanium Aluminides // JOM. 1991. V. 43. P. 40–47. https://doi.org/10.1007/BF03221103
  7. Chan K.S. Understanding Fracture Toughness in Gamma TiAl // JOM. 1992. V. 44. P. 30–38. https://doi.org/10.1007/BF03223047
  8. Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Additional Elements on Mechanical Properties of TiAl-base Alloys // J. Jpn Inst. Met. 1988. V. 52. № 11. P. 1159–1166. https://doi.org/10.2320/jinstmet1952.52.11_1159
  9. Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Third Elements on the Structures of TiA1-Based Alloys // J. Jpn Inst. Met. 1988. V. 52. № 8. P. 816–825. https://doi.org/10.2320/jinstmet1952.52.8_816
  10. Dwight A. Alloying Behavior of Zirconium, Hafnium and the Actinides in Several Series of Isostructural Compounds // J. Less-Common Met. 1974. V. 34. P. 279–284. https://doi.org/10.1016/0022-5088(74)90170-2
  11. Chakrabarti D.J. Phase Stability in Ternary Systems of Transition Elements with Aluminum // Metall. Mater. Trans. B. 1977. V. 8. P. 121–123. https://doi.org/10.1007/BF02656360
  12. Sun J., Lee C., Hu G. The Dependence of Tensile Behaviour of Ll2 Compound AI67Ti25Mn8 on the Strain Rate at 1173 K // Scr. Mater. 1997. V. 37. № 5. P. 645–650.
  13. Mabuchi H., Kito A., Nakamoto A., Tsuda H., Nakayama Y. Effects of Manganese on the L12 Compound Formation in Al3Ti-based Alloys // Intermetallics. 1996. V. 4. P. 193–199. https://doi.org/10.1016/0966-9795(96)00005-2
  14. Xin-L., Xing Q., Grytsiv A., Rogl P., Podloucky R., Schmidt H., Giester G, Xue-Yong D. On the Ternary Laves Phases Ti(Mn1–xAlx)2 with MgZn2-type // Intermetallics. 2008. V. 16. P. 16–26. https://doi.org/10.1016/j.intermet.2007.07.005
  15. Chen Z., Jones I., Small C. Laves Phase in Ti-42Al-10Mn Alloy // Scr. Mater. 1996. V. 35. № 1. P. 23–27. https://doi.org/10.1016/1359-6462(96)00085-1
  16. Butler C.J., Mccartney D.G., Small C.J., Horrocks F.J., Saunders N. Solidification Microstructures and Calculated Phase Equilibria in the Ti-Al–Mn System // Acta Mater. 1997. V. 45. № 7. P. 2931–2947. https://doi.org/10.1016/S1359-6454(96)00391-6
  17. Chen L.Y., Li C.H., Qiu A.T., Lu X.G., Ding W.Z., Zhong Q.D. Calculation of Phase Equilibria in Ti–Al–Mn Ternary System Involving a New Ternary Intermetallic Compound // Intermetallics. 2010. V. 18. № 11. P. 2229–2237. https://doi.org/10.1016/j.intermet.2010.07.005
  18. Raghavan V. Al–Mn–Ti (Aluminum–Manganese–Titanium) // J. Phase Equilib. Diffus. 2011. V. 32. P. 465–467. https://doi.org/10.1007/s11669-011-9926-6
  19. Zhi L., Jiashi M., Renhai S., James C.W., Alan A.L. CALPHAD Modeling and Experimental Assessment of Ti–Al–Mn Ternary System // Calphad. 2018. V. 63. P. 126–133. https://doi.org/10.1016/j.calphad.2018.09.002
  20. Zhang S., Nic J., Mikkola D. New Cubic Phases Formed by Alloying Al3Ti with Mn and Cr // Scr. Metall. Mater. 1990. V. 24. P. 57–62.
  21. Toshimitsu T., Hiroshi H. The Influence of Oxygen Concentration and Phase Composition on the Manufacturability and High-Temperature Strength of Ti–42Al–5Mn (at %) Forged Alloy // J. Mater. Process. Technol. 2019. V. 213. P. 752–758. https://doi.org/10.1016/j.jmatprotec.2012.12.003
  22. Hongjian T., Xiaobing L., Yingche M., Chen B., Xing W., Zhao P., Lei S., Zhang M., Liu K. Multistep Evolution of βo Phase during Isothermal Annealing of Ti–42Al–5Mn Alloy: Formation of Laves Phase // Intermetallics. 2020. V. 126. https://doi.org/10.1016/j.intermet.2020.106932
  23. Лазарев П.А., Бусурина М.Л., Сычев А.Е. Самораспространяющийся высокотемпературный синтез в системе Ti–Al–Mn // Физика горения и взрыва. 2023. Т. 59. № 1. С. 1272–1278. https://doi.org/10.15372/FGV20230109
  24. Shu S., Qiu F., Xing B., Jin S., Wang J., Jiang Q. Effect of Strain Rate on the Compression Behavior of TiAl and TiAl–2Mn Alloys Fabricated by Combustion Synthesis and Hot Press Consolidation // Intermetallics. 2013. V. 43. P. 24–28. https://doi.org/10.1016/j.intermet.2013.07.003
  25. Bondarchuk Yu.V., Pityulin A.N., Sytschev A.E. SHS Compunction of Multilayer Solid Alloy/Metal Materials // Int. J. Self-Propag. High-Temp. Synth. 1993. V. 2. P. 75–83.
  26. Питюлин А.Н. Силовое компактирование в СВС-процессах // Самораспространяющийся высокотемпературный синтез: теория и практика / Под ред. Сычева А.Е. Черноголовка: Территория, 2001. С. 333–353.
  27. Kovalev D., Ponomarev V. Time-Resolved X-Ray Diffraction in SHS Research and Related Areas: An Overview // Int. J. Self-Propag. High-Temp. Synth. 2019. V. 28. № 2. P. 114–123.
  28. Yong D., Jiong W., Jingrui Z., Clemens J., Weitzer F., Schmid R., Munekazu O., Honghui X., Liu Z., Shunli S., Zhang W. Reassessment of the Al–Mn System and a Thermodynamic Description of the Al–Mg–Mn System // Int. J. Mater. Res. 2007. V. 98. № 9. P. 855–871. https://doi.org/10.3139/146.101547
  29. Shevyrtalov S., Zhukov A., Medvedeva S., Lyatun I., Zhukova V., Rodionova V. Radial Elemental and Phase Separation in Ni-Mn-Ga Glass-Coated Microwires // J. Appl. Phys. 2018. V. 123 № 17. P. 173–903. https://doi.org/10.1063/1.5028549

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (608KB)
3.

Download (639KB)
4.

Download (53KB)
5.

Download (546KB)
6.

Download (95KB)
7.

Download (2MB)
8.

Download (176KB)

Copyright (c) 2023 П.А. Лазарев, М.Л. Бусурина, О.Д. Боярченко, Д.Ю. Ковалев, А.Е. Сычев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».