Atomic Ordering Kinetics in a Cu–56 at % Au Alloy at a Temperature of 250°C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the kinetics of the disorder → order (A1 → L10) transformation in Cu–56Au nonstoichiometric alloy at a temperature of 250°C. The disordered initial state of the alloy was produced by either quenching of samples from a high temperature or plastic deformation. The results demonstrate that the rate of atomic ordering in the quenched alloy is extremely low: the transformation needs approximately two months of annealing at a temperature of 250°C to reach completion. The rate of atomic ordering in predeformed samples is even lower. In both an as-quenched and an ordered state, the lattice parameters of the alloy under investigation slightly exceed those of the equiatomic alloy. Independent of the initial state of samples, their microhardness first rises in the course of atomic ordering and then falls off. The resistivity of Cu–56Au alloy in a well-ordered state has been shown for the first time to be ρ = 7.04 × 10–8 Ω m, which is far lower than was thought previously. The data we obtained have been used to assess the ratio of the phases present (order/disorder) in different stages of annealing.

About the authors

A. Yu. Volkov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: volkova@imp.uran.ru
Ekaterinburg, 620108 Russia

P. O. Podgorbunskaya

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Ural Federal University Named after the First President of Russia B.N. Yeltsin

Email: novikova@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620102 Russia

O. S. Novikova

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: novikova@imp.uran.ru
Ekaterinburg, 620108 Russia

A. I. Valiullin

M.N. Mikheev lnstitute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: podgorbunskaua@imp.uran.ru
620108, Yekaterinburg, Russia

A. V. Glukhov

M.N. Mikheev lnstitute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: podgorbunskaua@imp.uran.ru
620108, Yekaterinburg, Russia

N. A. Kruglikov

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nick@imp.uran.ru
Russia, 620108, Yekaterinburg

References

  1. Kurnakov N., Zemczuzny S., Zasedatelev M. Transformations in Alloys of Gold with Copper // J. Inst. Met. 1916. V. 15. P. 305–331.
  2. Jogansson C.H., Linde J.O. Rongenographishe und Elecrtiche Untersuchungen der CuAu – Systems // Ann. Phys. 1936. V. 25. P. 1–48.
  3. Столофф Н.С., Дэвис Р.Г. Механические свойства упорядочивающихся сплавов; Пер. с англ. Вульф Л.Б. / Под ред. Курдюмова В.Г. М.: Металлургия, 1969. 113 с.
  4. Garcia-Gonzalez M., van Petegem S., Baluc N., Dupraz M., Honkimaki V., Lalire F., van Swygenhoven H. Influence of Thermo-Mechanical History on the Ordering Kinetics in 18 Carat Au Alloys // Acta Mater. 2020. V. 191. P. 186–197. https://doi.org/10.1016/j.actamat.2020.03.032
  5. Antonova O.V., Volkov A.Yu. Changes of Microstructure and Electrical Resistivity of Ordered Cu-40Pd (at. %) Alloy under Severe Plastic Deformation // Intermetallics. 2012. V. 21. P. 1–9. https://doi.org/10.1016/j.intermet.2011.09.004
  6. Glezer A.M., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. Unusual Behavior of Long-Range Order Parameter in Fe3Al Superstructure under Severe Plastic Deformation in Bridgman Anvils // J. Alloys Compd. 2018. V. 744. P. 791–796. https://doi.org/10.1016/j.jallcom.2018.02.124
  7. Иевлев В.М., Донцов А.И., Канныкин С.В., Прижимов А.С., Солнцев К.А., Рошан Н.Р., Горбунов С.В. Коэффициент термического расширения твердого раствора Pd–Cu // Неорган. материалы. 2020. Т. 56. № 12. С. 1294–1297. https://doi.org/10.31857/S0002337X20120064
  8. Новикова О.С., Лавринова К.О., Костина А.Е., Кругликов Н.А., Елохина Н.В., Волков А.Ю. Использование резистометрии для определения температурно-концентрационной границы фазового превращения L12 → A1 в сплавах Cu–Pd // Неорган. материалы. 2019. Т. 55. № 2. С. 133–143. https://doi.org/10.1134/S0002337X1902009X
  9. Федоров П.П., Волков С.Н. Фазовая диаграмма системы Au–Cu // Журн. неорган. химии. 2016. Т. 61. № 6. С. 809–812. https://doi.org/10.7868/S0044457X16060064
  10. Федоров П.П., Шубин Ю.В., Чернова Е.В. Фазовая диаграмма системы медь-палладий // Журн. неорган. химии. 2021. Т. 66. № 6. С. 794–797. https://doi.org/10.31857/S0044457X21050056
  11. Volkov A.Yu., Antonova O.V., Glukhov A.V., Komkova D.A., Antonov B.D., Kostina A.E., Livinets A.A., Generalova K.N. Features of the Disorder-Order Phase Transition in non-Stoichoimetric Cu–56 at. % Au Alloy // J. Alloys Compd. 2021. V. 891. P. 161938. https://doi.org/10.1016/j.jallcom.2021.161938
  12. Малышев В.М., Румянцев Д.В. Золото. М.: Металлургия, 1979. 288 с.
  13. Гринберг Б.А., Сюткина В.И. Новые методы упрочнения упорядоченных сплавов. М.: Металлургия, 1985. 175 с.
  14. Генералова К.Н., Глухов А.В., Волков А.Ю. Рентгеноструктурный анализ кинетики атомного упорядочения по типу L10 в нестехиометрическом золото-медном сплаве // Вестн. Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2018. Т. 20. С. 75–85. https://doi.org/10.15593/2224-9877/2018.2.09
  15. Tanaka S., Kanzava Y. Ageing Characteristics of Cu–Pd–Ag Alloys // J. Jpn. Inst. Met. Meter. 1980. V. 44. № 9. P. 973–979. https://doi.org/10.2320/jinstmet1952.44.9_973
  16. Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000. 271 с. 1. 17.
  17. Malis O., Ludwig K.F. Kinetics of Phase Transitions in Equiatomic CuAu // Phys. Rev. B: Condens. Matter. 1999. V. 60. № 21. P. 14675–14682.
  18. Волков А.Ю., Антонов Б.Д., Пацелов А.М. Влияние внешних воздействий на доменную структуру эквиатомного сплава CuAu // ФММ. 2010. Т. 110. № 3. С. 264–274.
  19. Syutkina V.I., Yakovleva E.S. The Mechanism of Deformation of the Ordered CuAu Alloy // Phys. Status Solidi. 1967. V. 21. № 2. P. 465–480.
  20. Cahn R.W. Recovery, Strain-Age-Hardening and Recrystallization in Deformed Intermetallics // High Temperature Aluminides and Intermetallics / Eds. Whang S.H. et al. N.Y.: Miner. Met. Mater. Soc. 1990. P. 245–270.
  21. Гринберг Б.А., Иванов М.А. Интерметаллиды Ni3Al и TiAl: микроструктура, деформационное поведение. Екатеринбург: УрО РАН, 2002. 359 с.
  22. Смирнов А.А. Теория электросопротивления сплавов. Киев: АН УССР, 1960. 223 с.
  23. Possiter P.L. Long-Range Order and the Electrical Resistivity // J. Phys. F: Met. Phys. 1980. V. 10. № 7. P. 1465–1495. https://doi.org/10.1088/0305-4608/10/7/014
  24. Mitsui K. Change in Electrical Resistivity during Continuous Heating of Cu3Pd Alloys Quenched from Various Temperatures // Philos. Mag. B. 2001. V. 81. № 4. P. 433–449. https://doi.org/10.1080/13642810110035537
  25. Wang Y., Jiang D., Yu W., Huang S., Wu D., Xu Y., Yang X. Short-Range Ordering in a Commercial Ni–Cr–Al–Fe Precision Resistance Alloy // Mater. Des. 2019. V. 181. P. 107981. https://doi.org/10.1016/j.matdes.2019.107981
  26. Костина А.Е., Новикова О.С., Глухов А.В., Антонов Б.Д., Волков А.Ю. Формирование ближнего атомного порядка в сплавах Cu-Pd с малым содержанием палладия: резистометрическое исследование // ФММ. 2022. Т. 123. № 1. С. 40–46. https://doi.org/10.31857/S0015323022010089
  27. Kim M.J., Flanagan W.F. The Effect of Plastic Deformation on the Resistivity and Hall Effect of Copper-Palladium and Gold-Palladium Alloys // Acta Metall. 1967. V. 15. P. 735–745.
  28. Буйнов Н.Н. Рентгенографическое исследование упорядочения в сплаве AuCu // ЖЭТФ. 1947. № 1. С. 41–46.
  29. Volkov A.Yu., Novikova O.S., Antonov B.D. The Kinetics of Ordering in an CuPd Alloy: A Resistometric Study // J. Alloys Compd. 2013. V. 581. P. 625–631. https://doi.org/10.1016/j.jallcom.2013.07.132
  30. Кристиан Дж. Теория превращений в металлах и сплавах; Пер. с англ. Беленького А.Я. и Темкина Д.Е. М.: Мир, 1978. Т. 1. 806 с.
  31. Балина Е.А., Гельд П.В., Андреева Л.П., Зеленин Л.П. Кинетика процессов упорядочения и разупорядочения двойных сплавов Cu-Pd // ФММ. 1990. № 12. С. 144–148.
  32. Kuczynski G.C., Hochman R.E., Doyama M. Study of the Kinetics of Ordering in the Alloy CuAu // J. Appl. Phys. 1955. V. 26. № 7. P. 871–878. https://doi.org/10.1063/1.1722112

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (106KB)
3.

Download (234KB)
4.

Download (59KB)
5.

Download (66KB)
6.

Download (52KB)

Copyright (c) 2023 А.Ю. Волков, П.О. Подгорбунская, О.С. Новикова, А.И. Валиуллин, А.В. Глухов, Н.А. Кругликов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».