Resorption Dynamics of Hydroxyapatite-, Wollastonite-, and Gelatin-Based Granules in Tris-Buffer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Results of an in vitro study demonstrate that, when brought in contact with tris-buffer, granules based on gelatin and synthetic ceramic powders containing varied percentages of Са10(РО4)6(ОН)2 and β-СаSiO3 rapidly degrade and swell, increasing in size by up to a factor of 1.2. After that, they gradually degrade, releasing calcium ions and phosphate and silicate anions to the solution. The systems with materials containing 20 to 60 wt % calcium silicate have been found to differ little in the concentrations of these ions. The weight loss of the composites, due to dissolution of the mineral components and gelatin, has been shown to exceed that of the apatite and wollastonite granules.

About the authors

A. P. Solonenko

Omsk State Medical University, 644099, Omsk, Russia

Email: annsolonenko@gmail.com
Россия, 644099, Омск, ул. Ленина, 12

A. E. Shevchenko

Omsk State Medical University, 644099, Omsk, Russia

Email: annsolonenko@gmail.com
Россия, 644099, Омск, ул. Ленина, 12

D. A. Polonyankin

Omsk State Technical University, 644050, Omsk, Russia

Author for correspondence.
Email: annsolonenko@gmail.com
Россия, 644050, Омск, пр. Мира, 11

References

  1. Morsy R., Abuelkhair R., Elnimr T. A Facile Route to the Synthesis of Hydroxyapatite/Wollastonite Composite Powders by a Two-Step Coprecipitation Method // Silicon. 2015. V. 9. P. 637–641. https://doi.org/10.1007/s12633-015-9339-y
  2. Baştan F.E., Karaarslan O., Üstel F. Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications // DEU FMD. 2021. V. 23(67). P. 1–9. https://doi.org/10.21205/deufmd.2021236701
  3. Padmanabhann S.K., Gervaso F., Carrozzo M., Scalera F., Sannino A., Licciulli A. Wollastonite/Hydroxyapatite Scaffolds with Improved Mechanical, Bioactive and Biodegradable Properties for Bone Tissue Engineering // Ceram. Int. 2013. V. 39. P. 619–627. https://doi.org/10.1016/j.ceramint.2012.06.073
  4. Buriti J. da S., Barreto M.E.V., Santos K.O., Fook M.V.L. Thermal, Morphological, Spectroscopic and Biological Study of Chitosan, Hydroxyapatite and Wollastonite Biocomposites // J. Therm. Anal. Calorim. 2018. V. 134. P. 1521–1530. https://doi.org/10.1007/s10973-018-7498-y
  5. Yu H., Ning C., Lin K., Chen L. Preparation and Characterization of PLLA/CaSiO3/Apatite Composite Films // Int. J. Appl. Ceram. Technol. 2012. V. 9. P. 133–142. https://doi.org/10.1111/j.1744-7402.2010.02606.x
  6. Encinas-Romero M.A., Aguayo-Salinas S., Castillo S.J., Castillon-Barraza F.F., Castano V.M. Synthesis and Characterization of Hydroxyapatite-Wollastonite Composite Powders by Sol–Gel Processing // Int. J. Appl. Ceram. Technol. 2008. V. 5. P. 401–411. https://doi.org/10.1111/j.1744-7402.2008.02212.x
  7. Lin K., Zhang M., Zhai W., Qu H., Chang J. Fabrication and Characterization of Hydroxyapatite/Wollastonite Composite Bioceramics with Controllable Properties for Hard Tissue Repair // J. Am. Ceram. Soc. 2011. V. 94. P. 99–105. https://doi.org/10.1111/j.1551-2916.2010.04046.x
  8. Encinas-Romero M.A., Aguayo-Salinas S., Valenzuela-Garcia J.L., Payan S.R., Castillon-Barraza F.F. Mechanical and Bioactive Behavior of Hydroxyapatite-Wollastonite Sintered Composites // Int. J. Appl. Ceram. Technol. 2010. V. 7. P. 164–177. https://doi.org/10.1111/j.1744-7402.2009.02377.x
  9. Ryu H.S., Lee J.K., Kim H., Hong K.S. New Type of Bioactive Materials: Hydroxyapatite/α-Wollastonite Composites // J. Mater. Res. 2005. V. 20. P. 1154–1162. https://doi.org/10.1557/JMR.2005.0144
  10. Chen Z., Zhai J., Wang D., Chen C. Bioactivity of Hydroxyapatite/Wollastonite Composite Films Deposited by Pulsed Laser // Ceram. Int. 2018. V. 44. № 9. P. 10204–10209. https://doi.org/10.1016/j.ceramint.2018.03.013
  11. Beheri H.H., Mohamed K.R., El-Bassyouni G.T. Mechanical and Microstructure of Reinforced Hydroxyapatite/Calcium Silicate Nano-composites Materials // Mater. Design. 2013. V. 44. P. 461–468. https://doi.org/10.1016/j.matdes.2012.08.020
  12. Kokubo T., Takadama H. How Useful is SBF in Predicting in vivo Bone Bioactivity? // Biomaterials. 2006. V. 27. P. 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  13. Shevchenko A.E., Solonenko A.P., Blesman A.I., Polonyankin D.A., Chikanova E.S. Synthesis and Physicochemical Investigation of Hydroxyapatite and Wollastonite Composite Granules // J. Phys.: Conf. Ser. 2021. V. 1791. P. 012119. https://doi.org/10.1088/1742-6596/1791/1/012119
  14. Komlev V.S., Barinov S.M., Koplik E.V. A Method to Fabricate Porous Spherical Hydroxyapatite Granules Intended for Time-controlled Drug Release // Biomaterials. 2002. V. 23. P. 3449–3454. https://doi.org/10.1016/S0142-9612(02)00049-2
  15. Hasan M.L., Padalhin A.R., Kim B., Lee B.-T. Preparation and Evaluation of BCP-CSD-Agarose Composite Microsphere for Bone Tissue Engineering // J. Biomed. Mater. Res. B. 2019. V. 9999B. P. 1–10. https://doi.org/10.1002/jbm.b.34318
  16. РД 52.24.433-2005. Массовая концентрация кремния в поверхностных водах суши. Методика выполнения измерений фотометрическим методом в виде желтой формы молибдокремниевой кислоты. 2005.
  17. Dorozhkin S.V. Dissolution Mechanism of Calcium Apatites in Acids: A Review of Literature // World J. Methodol. 2012. V. 26. № 2(1). P. 1–17. https://doi.org/10.5662/wjm.v2.i1.1
  18. Niu L., Jiao K., Wang T., Zhang W., Camilleri J., Bergeron B.E., Feng H., Mao J., Chen J., Pashley D.H., Tay F.R. A Review of the Bioactivity of Hydraulic Calcium Silicate Cements // J. Dent. 2014. V. 42. № 5. P. 517–533. https://doi.org/10.1016/j.jdent.2013.12.015
  19. Ni S., Lin K., Chang J., Chou L. β-CaSiO3/β-Ca3(PO4)2 Composite Materials for Hard Tissue Repair: In vitro Studies // J. Biomed. Mater. Res. A. 2008. V. 85, № 1. P. 72–82. https://doi.org/10.1002/jbm.a.31390
  20. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. Химия неорганических биоматериалов на основе фосфатов кальция // РХЖ. 2004. Т. 48. № 4. С. 52–64.
  21. Hossana M.J., Gafurb M.A., Kadirb M.R., Karima M.M. Preparation and Characterization of Gelatin-Hydroxyapatite Composite for Bone Tissue Engineering // IJET-IJENS. 2014. V. 14. № 1. P. 24–32.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (355KB)
4.

Download (73KB)
5.

Download (173KB)
6.

Download (337KB)
7.

Download (1MB)

Copyright (c) 2023 А.П. Солоненко, А.Е. Шевченко, Д.А. Полонянкин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».