Effect of Ultrasonic Treatment on the Surface Topography of Quartz Glass

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper presents our results on ultrasound-induced changes in the surface topography of quartz glass studied using the Allan variance method. The use of this method has made it possible to quantitatively assess roughness components corresponding to surface defects of particular size. Prolonged ultrasonic treatment of quartz glass plates at a power density of 10 W/cm2 has been shown to cause significant changes in surface roughness: the profile height due to small surface defects, 0.125 μm in size, increased by about 40% and the one due to large defects (12 μm) decreased by about 30%. The observed changes in surface topography seem to be related to cavitation destruction of large surface defects by local cumulative jets.

Негізгі сөздер

Авторлар туралы

B. Lunin

Moscow State University, 119991, Moscow, Russia

Email: luninboris@yandex.ru
Россия, 119991, Москва, Ленинские горы, 1

A. Nikolaev

Moscow State University, 119991, Moscow, Russia

Хат алмасуға жауапты Автор.
Email: luninboris@yandex.ru
Россия, 119991, Москва, Ленинские горы, 1

Әдебиет тізімі

  1. Bu X., Alheshibri M. The Effect of Ultrasound on Bulk and Surface Nanobubbles: A Review of the Current Status // Ultrason. Sonochem. 2021. V. 76. P. 105629. https://doi.org/10.1016/j.ultsonch.2021.105629
  2. Kruszelnicki M., Hassanzadeh A., Legawiec K.J., Polowczyk I., Kowalczuk P.B. Effect of Ultrasound Pre-Treatment on Carbonaceous Copper-Bearing Shale Flotation // Ultrason. Sonochem. 2022. V. 84. P. 105962. https://doi.org/10.1016/j.ultsonch.2022.105962
  3. Lyubimova T., Rybkin K., Oscar Fattalov O., Kuchinskiy M., Filippov L. Experimental Study of Temporal Dynamics of Cavitation Bubbles Selectively Attached to the Solid Surfaces of Different Hydrophobicity under the Action of Ultrasound // Ultrasonics. 2021. V. 117. P. 106516. https://doi.org/10.1016/j.ultras.2021.106516
  4. Novikova L., Ayrault P., Fontaine C., Chatel G., Jérôme F., Belchinskaya L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates // Ultrason. Sonochem. 2016. V. 31. P. 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
  5. Lee J., Yasui K., Ashokkumar M., Kentish S.E. Quantification of Cavitation Activity by Sonoluminescence to Study the Sonocrystallization Process under Different Ultrasound Parameters // Cryst. Growth. Des. 2018. V. 18. P. 5108–5115. https://doi.org/10.1021/acs.cgd.8b00547
  6. Аганин А.А., Гусева Т.С., Косолапова Л.А., Малахов В.Г. Динамика пузырька и импульсное нагружение твердой поверхности при акустическом воздействии // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2021. Т. 163. С. 31–47. https://doi.org/10.26907/2541-7746.2021.1.31-47
  7. Аганин А.А., Косолапова Л.А., Малахов В.Г. Динамика пузырька газа в жидкости вблизи твердой поверхности // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2018. Т. 160. Вып. 1. С. 154–164.
  8. Шероховатость поверхности. Параметры и характеристики. ГОСТ 2789-73. Стандартинформ. 2006.
  9. Айман О. Динамика формирования поверхностной шероховатости при обработке свободным абразивом // Дис. … к.т.н. 05.11.07. С-П.: Университет ИТМО, 2005. 131 с.
  10. Miller P.E., Suratwala T.I., Wong L.L., Feit M.D., Menapace J.A., Davis P.J., Steele R.A. The Distribution of Subsurface Damage in Fused Silica // Laser-Induced Damage Opt. Mater. 2005. V. 5991. P. 599101. https://doi.org/10.1117/12.638821
  11. Patrikar R.M. Modeling and Simulation of Surface Roughness // Appl. Surf. Sci. 2004. V. 228. № 1–4. P. 213–220. https://doi.org/10.1016/j.apsusc.2004.01.010
  12. Pfeifer P. Fractal Dimension as Working Tool for Surface-roughness Problems //Appl. Surf. Sci. 1984. V. 18. № 1–2. P. 146–164.
  13. Jahn R., Truckenbrodt H. A Simple Fractal Analysis Method of the Surface Roughness // J. Mater. Process. Technol. 2004. V. 145. № 1. P. 40–45. https://doi.org/10.1016/S0924-0136(03)00860-4
  14. Панасюк Г.П., Козерожец И.В., Ворошилов И.Л., Ивакин Ю.Д., Привалов В.И., Данчевская М.Н. Формы воды на поверхности и в объеме диоксида кремния // Журн. неорган. химии. 2021. Т. 66. № 5. С. 623–630. https://doi.org/10.31857/S0044457X21050123
  15. Banes J.A. Characterization of Frequency Stability // IEEE Trans. Instrum. Meas. 1971. IM-20. № 2. P. 105–120.
  16. Zhou D., Xu P., Gu Q. Stochastic Nested Variance Reduction for Nonconvex Optimization // J. Mach. Learn. Res. 2020. V. 21. № 1. P. 4130–4192.
  17. Ma Y., Hu Y., Qiao S., He Y., Tittel F.K. Trace Gas Sensing Based on Multi-Quartz-Enhanced Photothermal Spectroscopy // Photoacoustics. 2020. V. 20. P. 100206. https://doi.org/10.1016/j.pacs.2020.100206
  18. Wang P., Luan C-Y., Qiao M., Um M., Zhang J. Single Ion Qubit with Estimated Coherence Time Exceeding One Hour // Nature Commin. 2021. V. 12. 233. https://doi.org/10.1038/s41467-020-20330-w
  19. ALAMATH. Allan Variance Software. URL: http://www.alavar.org/.
  20. Флинн Г. Физика акустической кавитации в жидкостях // Физическая акустика / Под ред. Мэзона У. М.: Мир, 1967. Т. 1. С. 7–138.
  21. Нумачи Ф. Экспериментальное исследование кавитации, возбуждаемой ультразвуком // Труды американского общества Инженеров механиков. Теоретические основы инженерных расчетов. Сер.Д. 1965. № 4. С. 128–139.
  22. Kornfeld M., Suvorov L. On the Destructive Action of Cavitation // J. Appl. Phys. 1944. V. 15. № 3. P. 495–497.
  23. Peng C., Tian S., Li G., Wei M. Enhancement of Cavitation Intensity and Erosion Ability of Submerged Cavitation Jet by Adding Micro-Particles // Ocean Eng. 2020. V. 209. P. 107516. https://doi.org/10.1016/j.oceaneng.2020.107516
  24. Tan K.L., Yeo S.H. Bubble Dynamics and Cavitation Intensity in Milli-Scale Channels under an Ultrasonic Horn // Ultrason. Sonochem. 2019. V. 58. P. 104666. https://doi.org/10.1016/j.ultsonch.2019.104666
  25. Roylance D. Introduction to Fracture Mechanics // URL: www.pharmacoengineering.com/wp-content/upload/ 2018/03/MIT3_11F99_frac.pdf
  26. Ma G., Xia W., Xie G., Peng Y. Ultrasound-Assisted Detachment Behavior of Glass Beads and Fragments from a Fixed Bubble //Powder Technol. 2019. V. 355. P. 611–616. https://doi.org/10.1016/j.powtec.2019.07.092

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (242KB)
3.

Жүктеу (40KB)
4.

Жүктеу (135KB)

© Б.С. Лунин, А.Л. Николаев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».