Graphite Oxide-Based Magnetic Aerogels as Sorbents of Doxorubicin

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper reports novel techniques for the preparation of aerogels based on graphite oxide (GO) and nanocomposites of GO and superparamagnetic iron oxide nanoparticles (GO/Fe3O4) and discusses specific features of the synthesized materials as sorbents of doxorubicin from aqueous solutions. Sorption efficiency of the aerogel based on GO and superparamagnetic iron oxide nanoparticles (GO/Fe3O4) and the GO aerogel has been determined to be about 50 and 85%, respectively. At the same time, one advantage of the magnetic aerogel is that the sorbent can be removed from solution by an external magnetic field. In the case of the formal description of the sorption process by the pseudo-first-order rate equation (@)  where W is sorption efficiency, the rate constant is k = 0.042 ± 0.004 min–1 for graphite oxide and 0.0832 ± 0.018 min–1 for the GO/Fe3O4 nanocomposite. The GO/Fe3O4 composite saturates about a factor of 2 more rapidly than pure GO. Sorption by the magnetic aerogel is an exothermic process. The highest efficiency of sorption from a solution with a concentration of 40 mg/L was 95% at 25°C and 60% at 40°C. The present results demonstrate that magnetic graphite aerogels are potentially attractive for use as sorbents and matrices for prolonged-release antitumor drugs.

Sobre autores

E. Eremina

Moscow State University, 119991, Moscow, Russia

Email: ea_er@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

A. Kaplin

Moscow State University, 119991, Moscow, Russia; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: ea_er@mail.ru
Россия, 119991, Москва, Ленинские горы, 1; Россия, 119991, Москва, ул. Косыгина, 4

A. Rubleva

Moscow State University, 119991, Moscow, Russia

Email: ea_er@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

E. Gudilin

Moscow State University, 119991, Moscow, Russia

Email: ea_er@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

V. Eremin

Moscow State University, 119991, Moscow, Russia

Autor responsável pela correspondência
Email: ea_er@mail.ru
Россия, 119991, Москва, Ленинские горы, 1

Bibliografia

  1. Petukhov D.I., Kapitanova O.O., Eremina E.A., Goodilin E.A. Preparation, Chemical Features, Structure and Applications of Membrane Materials Based on Graphene Oxide // Mendeleev Commun. 2021. V. 31. № 2. P. 137–148. https://doi.org/10.1016/j.mencom.2021.03.001
  2. Brodie B.C. On the Atomic Weight of Graphite // Philos. Trans. R. Soc. London. 1859. V. 149. P. 249–259. https://doi.org/10.1098/rstl.1859.0013
  3. Hongcai Gao, Hongwei Duan. 2D and 3D Graphene Materials: Preparation and Bioelectrochemical Applications // Biosens. Bioelectron. 2015. V. 65 P. 404–419. https://doi.org/10.1016/j.bios.2014.10.067
  4. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide // J. Am. Chem. Soc. 1958. V. 80. № 6. P. 1339–1339. https://doi.org/10.1021/ja01539a017
  5. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A. et al. Improved Synthesis of Graphene Oxide // ACS Nano. 2010. V. 4. № 8. P. 4806–4814. https://doi.org/10.1021/nn1006368
  6. Xu Jiang, Wenyue Pan, Zhili Xiong, Yixuan Zhang, Longshan Zhao. Facile Synthesis of Layer-by-Layer Decorated Graphene Oxide Based Magnetic Nanocomposites for β-Agonists/dyes Adsorption Removal and Bacterial Inactivation in Wastewater // J. Alloys Compd. 2021. № 870. P. 1–12.
  7. Pavlova J.A., Ivanov A.V., Maksimova N.V., Pokholok K.V., Vasiliev A.V., Malakho A.P., Avdeev V.V. Two-Stage Preparation of Magnetic Sorbent Based on Exfoliated Graphite with Ferrite Phases for Sorption of Oil and Liquid Hydrocarbons from the Water Surface // J. Phys. Chem. Solids. 2018. № 116. P. 299–305. https://doi.org/10.1016/j.jpcs.2018.01.044
  8. Xiaowen Wang, Yuyuan Zhang, Rui Shan, Huawen Hu. Polydopamine Interface Encapsulating Graphene and Immobilizing Ultra-small, Active Fe3O4 Nanoparticles for Organic Dye Adsorption // Ceram. Int. 2021. № 47. P. 3219–3231. https://doi.org/10.1016/j.ceramint.2020.09.160
  9. Limei Cui, Xiaoyao Guo, Qin Wei, Yaoguang Wang, Liang Gao, Liangguo Yan, Tao Yan, Bin Du. Removal of Mercury and Methylene Blue from Aqueous Solution by Xanthate Functionalized Magnetic Graphene Oxide: Sorption Kinetic and Uptake Mechanism // J. Colloid Interface Sci. 2015. № 439. P. 112–120. https://doi.org/10.1016/j.jcis.2014.10.019
  10. Yu Wanga, Yuhong Jinb, Chenchen Zhaob, Erzhuang Pana, Mengqiu Jia. Fe3O4 Nanoparticle/Graphene Aerogel Composite with Enhanced Lithium Storage Performance // Appl. Surf. Sci. 2018. V. 458. P. 1035–1042. https://doi.org/10.1016/j.apsusc.2018.07.127
  11. Fierascua I., Fistosa T., Baroia A.M., Brazdis R.I. Application of Magnetic Composites for the Removal of Organic Pollutants from Wastewaters // Mater. Today: Proc. 2019. V. 19. № 3. P. 910–916. https://doi.org/10.1016/j.matpr.2019.08.001
  12. Еремина Е.А., Каплин А.В., Елисеев А.А., Сидоров А.В., Раджабзода Ш.С., Григорьева А.В., Гудилин Е.А. Многофункциональные композиты на основе оксида графита, доксорубицина и магнитных наночастиц для адpесной доставки лекаpств // Рос. нанотехнологии. 2018. Т. 13. № 3–4. С. 49–56.
  13. Zonghua Wang, Chengfeng Zhou, Jianfei Xia, Brian Via, Yanzhi Xia, Feifei Zhang, Yanhui Li, Linhua Xia. Fabrication and Characterization of a Triple Functionalization of Graphene Oxide with Fe3O4, Folic Acid and Doxorubicin as Duak-Targeted Drug Nanocarrier // Colloids Surf., B. 2013. V. 106. P. 60–65. https://doi.org/10.1016/j.colsurfb.2013.01.032
  14. Meng-Meng Song, Huai-Liang Xu, Jun-Xing Liang, Hui-Hui Xiang, Rui Liu, Yu-Xian Shen. Lactoferrin Modified Graphene Oxide Iron Oxide Nanocomposite for Glioma-Targeted Drug Delivery // Mater. Sci. Eng., C. 2017. V. 77. P. 904–911. https://doi.org/10.1016/j.msec.2017.03.309
  15. Yue Yang, Yanrong Zhao, Shihan Sun, Xueyu Zhang et al. Self-Assembled Three-Dimensional Graphene/Fe3O4 Hydrogel for Efficient Pollutant Adsorption and Electromagnetic Wave Absorption // Mater. Res. Bull. 2016. V. 73. P. 401–408. https://doi.org/10.1016/j.materresbull.2015.09.032
  16. Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li et al. Ultra-Small Fe3O4 Nanocrystals Decorated on 2D Graphene Nanosheets with Excellent Cycling Stability as Anode Materials for Lithium Ion Batteries // Electrochim. Acta. 2016. V. 194. P. 219–226. https://doi.org/10.1039/c3nr01826a
  17. Jie-Ping Fana, Bing Zhenga, Yu Qina, Dan Yanga et al. A Superparamagnetic Fe3O4-Graphene Oxide Nanocomposite for Enrichment of Nuciferine in the Extract of Nelumbinis Folium (Lotus leaf) // Appl. Surf. Sci. 2016. V. 364. P. 332–339. https://doi.org/10.1016/j.apsusc.2015.12.160
  18. Yong Li, Ruofang Zhang, Xike Tian, Chao Yang et al. Facile Synthesis of Fe3O4 Nanoparticles Decorated on 3D Graphene Aerogels as Broad-Spectrum Sorbents for Water Treatment // Appl. Surf. Sci. 2016. V. 369. P. 11–18. https://doi.org/10.1016/j.apsusc.2016.02.019
  19. Yu Wang, Yuhong Jin, Chenchen Zhao, Erzhuang Pan et al. Fe3O4 Nanoparticle/Graphene Aerogel Composite with Enhanced Lithium Storage Performance // Appl. Surf. Sci. 2018. V. 458. P. 1035–1037. https://doi.org/10.1016/j.apsusc.2018.07.127
  20. Nur Hidayati Othman, Nur Hashimah Alias, Munawar Zaman Shahruddin, Noor Fitrah Abu Bakar et al. Adsorption Kinetics of Methylene Blue Dyes onto Magnetic Graphene Oxide // J. Environ. Chem. Eng. 2018. V. 6. P. 2803–2811. https://doi.org/10.1016/j.jece.2018.04.024
  21. Azizian S. Kinetic Models of Sorption. A Theoretical Analysis // J. Colloid Interface Sci. 2004. V. 276. № 1. P. 47–52. https://doi.org/10.1016/j.jcis.2004.03.048

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (134KB)
3.

Baixar (54KB)
4.

Baixar (1MB)
5.

Baixar (99KB)
6.

Baixar (113KB)
7.

Baixar (136KB)
8.

Baixar (109KB)
9.

Baixar (161KB)
10.

Baixar (59KB)

Declaração de direitos autorais © Е.А. Еремина, А.В. Каплин, А.А. Рублева, Е.А. Гудилин, В.В. Еремин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».