Interaction of a Metallic Catalyst with the Barrier Layer Material during High-Temperature Formation of Nickel Nanoparticles
- Authors: Bulyarskiy S.V.1, Dudin A.A.1, L’vov P.E.1,2, Grishin T.S.1, Rudakov G.A.1, Gusarov G.G.1
-
Affiliations:
- Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
- Ulyanovsk State University, 432017, Ulyanovsk, Russia
- Issue: Vol 59, No 3 (2023)
- Pages: 243-250
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/140149
- DOI: https://doi.org/10.31857/S0002337X23030028
- EDN: https://elibrary.ru/YQKCYZ
- ID: 140149
Cite item
Abstract
We have studied the effect of annealing conditions on the formation of nickel particles on a titanium nitride barrier layer produced by atomic layer deposition. The results demonstrate that the nanoparticle size depends on annealing temperature and time. At temperatures above 700°C, annealing for more than 5 min results in coalescence, which leads to particle growth and a decrease in the surface density of the particles. During annealing, nickel diffuses into the titanium nitride and the amount of nickel on the surface decreases. The experimental data agree with results of nanoparticle formation modeling in the hydrodynamic model. We have determined the catalyst–buffer interaction potential and melt viscosity, which demonstrate that, in the case of melting of a thin nickel layer, on the order of a few nanometers in thickness, the metal is similar to a supercooled liquid. Modeling results suggest that, during annealing of a thin metal film/barrier layer couple, the average nanoparticle size is smaller at lower potentials of interaction between the constituent materials of the couple.
About the authors
S. V. Bulyarskiy
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А
A. A. Dudin
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А
P. E. L’vov
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia; Ulyanovsk State University, 432017, Ulyanovsk, Russia
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А; Россия, 432017, Ульяновск, ул. Л. Толстого, 42
T. S. Grishin
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А
G. A. Rudakov
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А
G. G. Gusarov
Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
Author for correspondence.
Email: bulyar2954@mail.ru
Россия, 119991, Москва,
Ленинский пр., 32А
References
- Булярский С.В. Углеродные нанотрубки: технология, управление свойствами, применение. Ульяновск: Стрежень, 2011. 480 с.
- Dasgupta K., Joshi J.B., Banerjee S. Fluidized Bed Synthesis of Carbon Nanotubes – A Review // Chem. Eng. J. 2011. V. 171. № 3. P. 841–869. https://doi.org/10.1016/j.cej.2011.05.038
- Kumar M., Ando Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production // J. Nanosci. Nanotechnol. 2010. V. 10. № 6. P. 3739–3758. https://doi.org/10.1166/jnn.2010.2939
- Ago H., Komatsu T., Ohshima S., Kuriki Y., Yumura M. Dispersion of Metal Nanoparticles for Aligned Carbon Nanotube Arrays // Appl. Phys. Lett. 2000. V. 77. № 1. P. 79–81. https://doi.org/10.1063/1.126883
- Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M.A., Klein K.L., Lowndes D.H., Simpson M.L. Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly // J. Appl. Phys. 2005. V. 97. № 4. P. 41301. https://doi.org/10.1063/1.1857591
- Lee C.J., Park J., Yu J.A. Catalyst Effect on Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition // Chem. Phys. Lett. 2002. V. 360. № 3–4. P. 250–255. https://doi.org/10.1016/S0009-2614(02)00831-X
- Andrews R., Jacques D., Qian D., Rantell T. Multiwall Carbon Nanotubes: Synthesis and Application // Acc. Chem. Res. 2002. V. 35. № 12. P. 1008–1017. https://doi.org/10.1021/ar010151m
- Bulyarskiy S.V., Zenova E.V., Lakalin A.V., Molodenskii M.S., Pavlov A.A., Tagachenkov A.M., Terent’ev A.V. Influence of a Buffer Layer on the Formation of a Thin-Film Nickel Catalyst for Carbon Nanotube Synthesis // Tech. Phys. 2018. V. 63. № 12. P. 1834–1839. https://doi.org/10.1134/S1063784218120253
- L’vov P.E., Bulyarskiy S.V., Gusarov G.G., Molodenskiy M.S., Pavlov A.A., Ryazanov R.M., Dudin A.A., Svetukhin V.V. Kinetics of Nickel Particle Formation on Silicon Substrate with a Buffer Layer of Niobium Nitride // J. Phys.: Condens. Matter. 2020. V. 32. № 24. P. 245001. https://doi.org/10.1088/1361-648X/ab7870
- Львов П.Е., Светухин В.В., Булярский С.В., Павлов А.А. Моделирование смачивающих фазовых переходов в тонких пленках // Физика твердого тела. 2019. T. 61. № 10. C. 1916–1925.
- Peng Y., Wang Z., Alsayed A.M., Yodh A.G., Han Y. Publisher’s Note: Melting of Colloidal Crystal Films // Phys. Rev. Lett. 2010. V. 104. № 21. P. 205703. https://doi.org/10.1103/PhysRevLett.104.219901
- Thiele U. Recent Advances in and Future Challenges for Mesoscopic Hydrodynamic Modelling of Complex Wetting // Colloids Surf., A. 2018. V. 553. P. 487–495. https://doi.org/10.1016/j.colsurfa.2018.05.049
- Shchekin A.K., Lebedeva T.S., Suh D. The Overlapping Surface Layers and the Disjoining Pressure in a Small Droplet // Colloids Surf., A. 2019. V. 574. P. 78–85. https://doi.org/10.1016/j.colsurfa.2019.04.071
- Kukushkin S.A., Osipov A.V. Kinetics of First-Order Phase Transitions in the Asymptotic Stage // J. Exp. Theor. Phys. 1998. V. 86. № 6. P. 1201–1208. https://doi.org/10.1134/1.558591
- Slezov V.V., Schmelzer J. Kinetics of Formation and Growth of a New Phase with a Definite Stoichiometric Composition // J. Phys. Chem. Solids. 1994. V. 55. № 3. P. 243–251. https://doi.org/10.1016/0022-3697(94)90139-2
- Nowak W.B., Keukelaar R., Wang W., Nyaiesh A.R. Diffusion of Nickel Through Titanium Nitride Films // J. Vac. Sci. Technol., A. 1985. V. 3. № 6. P. 2242–2245. https://doi.org/10.1116/1.572900
Supplementary files
