Особенности частотно-зависимого поведения проводимости полимерного композиционного материала сверхвысокомолекулярный полиэтилен/нано-NiO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом импедансной спектроскопии исследованы электрофизические характеристики композитного материала на основе сверхвысокомолекулярного полиэтилена с осажденными на его гранулах наночастицами NiO. Это позволило изучить электротехнические свойства ансамбля равномерно распределeнных наночастиц в полимерной матрице. Вычислены значения диэлектрической проницаемости, емкости, тангенса угла диэлектрических потерь полимерного композита. Определены частотные зависимости активной и реактивной компонент комплексной проводимости. Установлено преобладание прыжкового механизма проводимости композита до частоты 1 МГц, который затем сменяется релаксационным. Обсуждается связь структурных особенностей композита с процессами переноса зарядов.

Об авторах

Л. Ю. Федоров

Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения
Российской академии наук”

Email: sfu-unesco@mail.ru
Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50

А. В. Ушаков

Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения
Российской академии наук”

Email: sfu-unesco@mail.ru
Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50

И. В. Карпов

Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения
Российской академии наук”

Автор, ответственный за переписку.
Email: sfu-unesco@mail.ru
Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50

Е. А. Гончарова

Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения
Российской академии наук”

Email: sfu-unesco@mail.ru
Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50

Список литературы

  1. Маркевич И.А., Селютин Г.Е., Дрокин Н.А., Селютин А.Г. Электрофизические и механические свойства композита с повышенной диэлектрической проницаемостью на основе сверхвысокомолекулярного полиэтилена, модифицированного углеродными нанотрубками // ЖТФ. 2020. Т. 90. Вып. 7. С. 1151–1158. https://doi.org/10.21883/JTF.2020.07.49450.391-19
  2. Беляев Б.А., Тюрнев В.В., Ходенков С.А. Эффективная диэлектрическая проницаемость анизотропного композита из сфероидных частиц в диэлектрической матрице // Письма в ЖТФ. 2021. Т. 47. Вып. 23. С. 22–26. https://doi.org/10.21883/PJTF.2021.23.51779.18984
  3. Баронин Г.С., Бузник В.М., Мищенко С.В., Завражин Д.О. Исследование строения и свойств полимерных композитов на основе политетрафторэтилена и наночастиц кобальта, титана и кремния // Инж.-физ. журн. 2021. Т. 94. Вып. 6. С. 1655–1662.
  4. Яковенко Е.С., Мацуй Л.Ю., Вовченко Л.Л., Олейник В.В., Лаунец В.Л., Труханов А.В. Диэлектрические свойства композитных материалов с ориентированными углеродными нанотрубками // Неорган. материалы. 2016. Т. 52. Вып. 11. С. 1271–1276. https://doi.org/10.7868/S0002337X1611018X
  5. Broadband Dielectric Spectroscopy / Eds. Kremer F., Schönhals A. N.Y.: Springer, 2003.
  6. Маркевич И.А., Дрокин Н.А., Селютин Г.Е. Исследование методом импедансной спектроскопии полимерного композита с углеродными нанотрубками в контакте с электролитом // ЖТФ. 2019. Т. 89. Вып. 9. С. 1400–1405. https://doi.org/10.21883/JTF.2019.09.48066.42-19
  7. Ульзутуев А.Н., Ушаков Н.М. Переходные процессы на границе нанонаполненный полиэтилен−металлический контакт // Письма в ЖТФ. 2012. Т. 38. Вып. 14. С. 56–63.
  8. Nemeryuk A.M., Lylina M.M., Retivov V.M., Volkov P.A., Zhdanovich O.A. Modification of Ultra-High-Molecular-Weight Polyethylene with Nanoparticles of Titanium Subgroup Metal Oxides // Russ. J. Inorg. Chem. 2015. V. 60. P. 1548–1555. https://doi.org/10.1134/S0036023615120190
  9. Lepeshev A.A., Drokin N.A., Ushakov A.V., Karpov I.V., Fedorov L.Yu., Bachurina E.P. Localization and Transfer of Charge Carriers in CuO Nanopowder by Impedance Spectroscopy // J. Mater. Sci.: Mater. Electron. 2018. V. 29. № 14. P. 12118–12125. https://doi.org/10.1007/s10854-018-9319-2
  10. Арбузова Т.И., Наумов С.В., Арбузов В.Л., Шальнов К.В., Ермаков А.Е., Мысик А.А. Поверхностный магнетизм нанокристаллического монооксида меди // ФТТ. 2003. Т. 45. Вып. 2. С. 290–295.
  11. Ushakov A.V., Karpov I.V., Zeer G.M., Fedorov L.Yu., Demin V.G., Goncharova E.A. Effect of Quenching Rate on the Crystalline and Impedance Properties of NiO Nanoparticles // IEEE Trans. Dielectr. Electr. Insul. 2020. V. 27. № 5. P. 1486–1491. https://doi.org/10.1109/TDEI.2020.009110
  12. Карпов И.В., Ушаков А.В., Лепешев А.А., Федоров Л.Ю. Плазмохимический реактор на основе импульсного дугового разряда низкого давления для синтеза нанопорошков // ЖТФ. 2017. Т. 87. Вып. 1. С. 140–145. https://doi.org/10.21883/JTF.2017.01.1851
  13. Федоров Л.Ю., Карпов И.В., Ушаков А.В., Лепешев А.А., Иваненко А.А. Структурное состояние сверхвысокомолекулярного полиэтилена при одностадийном осаждении наночастиц из плазмы дугового разряда // Письма в ЖТФ. 2017. Т. 43. Вып. 21. С. 24–32. https://doi.org/10.21883/PJTF.2017.21.45158.16747
  14. Ормонт М.А., Звягин И.П. Особенности частотной зависимости проводимости неупорядоченных полупроводников в области смены механизма переноса // Физика и техника полупроводников. 2015. Т. 49. Вып. 4. С. 449–452.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (825KB)
3.

Скачать (106KB)
4.

Скачать (169KB)
5.

Скачать (179KB)

© Л.Ю. Федоров, А.В. Ушаков, И.В. Карпов, Е.А. Гончарова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах