Adhesion Strength of the Interface between Solid Phases in the GaxGe40–xS60–Quartz Glass System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using normal pull-off testing, we have studied adhesion contact strength in the GaxGe40–xS60–quartz glass system as a function of contact formation temperature, pull-off test temperature, and chalcogenide glass composition. The addition of 1 at % gallium to glass composition considerably reduces the adhesion strength. Further increasing the percentage of gallium, to 8 at %, causes only a slight drop in adhesion. The observed general relationships can be accounted for by partial glass crystallization on heating for adhesion contact formation and subsequent cooling to the pull-off test temperature. We have formulated recommendations concerning detachment of GaxGe40–xS60 glasses from the quartz reactor wall.

About the authors

S. V. Mishinov

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

E. A. Tyurina

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

A. P. Velmuzhov

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

M. V. Sukhanov

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

A. D. Plekhovich

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

B. S. Stepanov

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

V. S. Shiryaev

Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Author for correspondence.
Email: velmuzhov.ichps@mail.ru
Россия, 603950, Нижний Новгород, ул. Тропинина, 49

References

  1. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. М.: Наука, 1984. 174 с.
  2. Feltz A., Krautwald A. Über Glasbildung und Eigenschaften von Chalkogenidsystemen; Zur Glasbildung im System GeS2–GeS–GaS1±k // Z. Chem. 1979. V. № 2. P. 78–79.
  3. Velmuzhov A.P., Sukhanov M.V., Tyurina E.A., Plekhovich A.D., Fadeeva D.A., Ketkova L.A., Churbanov M.F., Shiryaev V.S. Physicochemical, Optical Properties and Stability Against Crystallization of GaxGey–xS100–y (x = 0–8; y = 40–42) glasses // J. Non-Cryst. Solids. 2021. V. 554. P. 120615. https://doi.org/10.1016/j.jnoncrysol.2020.120615
  4. Heo J., Chung W.J. Rare-Earth-Doped Chalcogenide Glass for Lasers and Amplifiers // Adam J.-L., Zhang X., Chalcogenide Glasses. Preparation, Properties and Applications. Sawston: Woodhead, 2014. P. 381–410. https://doi.org/10.1533/9780857093561.2.347
  5. Simons D.R. Germanium Gallium Sulfide Glasses for Pr-Doped Fiber Amplifiers at 1.3 µm. Eindhoven: Tech. Univ. Eindhoven, 1995. 152 p. https://doi.org/10.6100/IR447635
  6. Abe K., Takebe H., Morinaga K. Preparation and Properties of Ge–Ga–S Glasses for Laser Hosts // J. Non-Cryst. Solids. 1997. V. 212. P. 143–150. https://doi.org/10.1016/S0022-3093(96)00655-2
  7. Ivanova Z.G., Aneva Z., Ganesan R., Tonchev D., Gopal E.S.R., Rao K.S.R.K., Allen T.W., DeCorby R.G., Kasap S.O. Low-Temperature Er3+ Emission in Ge–S–Ga Glasses Excited by Host Absorption // J. Non-Cryst. Solids. 2007. V. 353. P. 1418–1421. https://doi.org/10.1016/j.jnoncrysol.2006.10.066
  8. Wei K., Machewirth D.P., Wenzel J., Snitzer E., Sigel G.H., Jr. Pr3+-Doped Ge–Ga–S Glasses for 1.3 μm Optical Fiber Amplifiers // J. Non-Cryst. Solids. 1995. V. 182. P. 257–261. https://doi.org/10.1016/0022-3093(94)00513-3
  9. Lin C., Rüssel C., Dai S. Chalcogenide Glass-Ceramics: Functional Design and Crystallization Mechanism // Progr. Mater. Sci. 2018. V. 93. P. 1–44. https://doi.org/10.1016/j.pmatsci.2017.11.001
  10. Calvez L. Transparent Chalcogenide Glass-ceramics // Adam J.-L., Zhang X. Chalcogenide Glasses: Preparation, Properties and Applications // Sawston: Woodhead, 2014. P. 310–346. https://doi.org/10.1533/9780857093561.1.310
  11. Snopatin G.E., Shiryaev V.S., Plotnichenko V.G., Dianov E.M., Churbanov M.F. High-Purity Chalcogenide Glasses for Fiber Optics // Inorg. Mater. 2009. V. 45. № 13. P. 1439–1460. https://doi.org/10.1134/S0020168509130019
  12. Мишинов С.В., Чурбанов М.Ф., Горохов А.Н., Казаков Д.А., Ширяев В.С., Сучков А.И., Игумнов Л.А., Снопатин Г.Е. Адгезионный механизм деградации поверхности кварцевого стекла в процессах синтеза и формования стеклообразных халькогенидов мышьяка // Неорган. материалы. 2016. Т. 52. № 7. С. 773–777. https://doi.org/10.7868/S0002337X16070101
  13. Mishinov S.V., Churbanov M.F., Shiryaev V.S., Ketkova L.A. Contamination of Glassy Arsenic Sulfide by SiO2 Particles during Melt Solidification in Silica Glassware // J. Non-Cryst. Solids. 2018. V. 480. P. 3–7. https://doi.org/10.1016/j.jnoncrysol.2017.04.006
  14. Ketkova L.A., Churbanov M.F. Heterophase Inclusions as a Source of Non-Selective Optical Losses in Highpurity Chalcogenide and Tellurite Glasses for Fiber Optics // J. Non-Cryst. Solids. 2018. V. 480. P. 18–22. https://doi.org/10.1016/j.jnoncrysol.2017.09.018
  15. Sukhanov M.V., Velmuzhov A.P., Otopkova P.A., Ketkova L.A., Evdokimov I.I., Kurganova A.E., Plotnichenko V.G., Shiryaev V.S. Rare Earth Elements as a Source of Impurities in Doped Chalcogenide Glasses // J. Non-Cryst. Solids. 2022. V. 593. P. 121793. https://doi.org/10.1016/j.jnoncrysol.2022.121793
  16. Brilland L., Smektala F., Renversez G., Chartier T., Troles J., Nguyen T.N., Traynor N., Monteville A. Fabrication of Complex Structures of Holey Fibers in Chalcogenide Glass // Opt. Express. 2006. V. 14. № 3. P. 1280–1285. https://doi.org/10.1364/OE.14.001280
  17. Shiryaev V.S. Chalcogenide Glass Hollow-Core Microstructured Optical Fibers // Front. Mater. 2015. V. 2. P. 24. https://doi.org/10.3389/fmats.2015.00024
  18. Velmuzhov A.P., Sukhanov M.V., Churbanov M.F., Zernova N.S., Ketkova L.A., Sozin A.Yu., Shiryaev V.S., Skripachev I.V., Evdokimov I.I. Sulfur as the Source of Hydrogen Impurity and Heterogeneous Inclusions in the Ge-Ga-S Glasses // J. Non-Cryst. Solids. 2020. V. 545. P. 120237. https://doi.org/10.1016/j.jnoncrysol.2020.120237
  19. Velmuzhov A.P., Evdokimov I.I., Sukhanov M.V., Fadeeva D.A., Zernova N.S., Kurganova A.E. Distribution of Elements in Ge–Se Bulk Glasses and Optical Fibers Detected by Inductively Coupled Plasma Atomic Emission Spectrometry // J. Phys. Chem. Solids. 2020. V. 142. P. 109461. https://doi.org/10.1016/j.jpcs.2020.109461
  20. Shiryaev V.S., Mishinov S.V., Churbanov M.F. Investigation of Adhesion of Chalcogenide Glasses to Silica Glass / J. Non-Cryst. Solids. 2015. V. 408. P. 71–75. https://doi.org/10.1016/j.jnoncrysol.2014.10.010
  21. Mishinov S.V., Shiryaev V.S., Velmuzhov A.P., Sukhanov M.V., Zernova N.S., Plekhovich A.D., Evdokimov I.I., Churbanov M.F. Adhesion of GexSe100–x Glasses to Silica Glass // J. Non-Cryst. Solids. 2020. V. 531 P. 119857. https://doi.org/10.1016/j.jnoncrysol.2019.119857
  22. Hruby A. Evaluation of Glass-forming Tendency by Means of DTA // Czech. J. Phys. B. 1972. V. 22. № 11. P. 1187–1193.
  23. Schmelzer J.W., Tropin T.V. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy // Entropy. 2018. V. 20. № 2. P. 103–134. https://doi.org/10.3390/e20020103
  24. Fedorov V.D., Sakharov V.V., Provorova A.M., Baskov P.B., Churbanov M.F., Shiryaev V.S., Poulain Ma, Poulain Mi, Boutarfaia A. Kinetics of Isothermal Crystallization of Fluoride Glasses // J. Non-Cryst. Solids. 2001. V. 284. P. 79–84. https://doi.org/10.1016/S0022-3093(01)00383-0
  25. Velmuzhov A.P., Tyurina E.A., Sukhanov M.V., Stepanov B.S., Ketkova L.A., Evdokimov I.I., Kurganova A.E., Shiryaev V.S. Preparation of High-Purity Chalcogenide Glasses Containing Gallium(III) Sulfide // J. Non-Cryst. Solids. 2022. V. 593. P. 121786. https://doi.org/10.1016/j.jnoncrysol.2022.121786

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (74KB)
3.

Download (44KB)
4.

Download (160KB)
5.

Download (157KB)
6.

Download (86KB)

Copyright (c) 2023 С.В. Мишинов, Е.А. Тюрина, А.П. Вельмужов, М.В. Суханов, А.Д. Плехович, Б.С. Степанов, В.С. Ширяев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».