Properties of Terbium Oxide Nanoparticles Synthesized via Laser Ablation in a Reducing Medium
- Authors: Maksimov R.N.1,2, Platonov V.V.1, Osipov V.V.1, Karagedov G.R.3, Yurovskikh A.S.2, Spirina A.V.1, Shitov V.A.1
-
Affiliations:
- Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia
- Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Issue: Vol 59, No 2 (2023)
- Pages: 176-184
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/140128
- DOI: https://doi.org/10.31857/S0002337X23020112
- EDN: https://elibrary.ru/YDRFJY
- ID: 140128
Cite item
Abstract
This paper reports on the synthesis of terbium sesquioxide (Tb2O3) nanoparticles via laser ablation of a solid target in a flowing 95% Ar + 5% H2 binary welding mixture with the use of an ytterbium-doped fiber laser with an average output power of 300 W. We have studied morphological and structural features of the synthesized powder, its thermal behavior, magnetic properties, and densification dynamics during heating to 1450°C in vacuum. The synthesized particles were nearly spherical in shape, with an average size of 13 nm, and had a monoclinic crystal structure, which irreversibly transformed into a cubic structure of
symmetry as a result of firing in argon or vacuum at temperatures near 750 and 1050°C, respectively. Using temperature-dependent specific magnetization measurements, we determined their paramagnetic Curie temperature (θp = –11.8 K), Curie constant (C = 11.74 K emu/(mol Oe)), and effective magnetic moment (μeff = 9.69μB/Tb). These data suggest that antiferromagnetic exchange interaction between the terbium ions prevails and that the content of Tb4+ ions in the nanopowder is negligible. We have demonstrated the feasibility of producing transparent Tb2O3 ceramics by consolidating presintered nanoparticles via hot isostatic pressing for 2 h at a temperature of 1450°C and pressure of 200 MPa.
About the authors
R. N. Maksimov
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia; Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
Email: r.n.maksimov@urfu.ru
Россия, 620016, Екатеринбург,
ул. Амундсена, 106; Россия, 620002, Екатеринбург, ул. Мира, 19
V. V. Platonov
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia
Email: r.n.maksimov@urfu.ru
Россия, 620016, Екатеринбург,
ул. Амундсена, 106
V. V. Osipov
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia
Email: r.n.maksimov@urfu.ru
Россия, 620016, Екатеринбург,
ул. Амундсена, 106
G. R. Karagedov
Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Email: r.n.maksimov@urfu.ru
Россия, 630090, Новосибирск, ул. Кутателадзе, 18
A. S. Yurovskikh
Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
Email: r.n.maksimov@urfu.ru
Россия, 620002, Екатеринбург, ул. Мира, 19
A. V. Spirina
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia
Email: r.n.maksimov@urfu.ru
Россия, 620016, Екатеринбург,
ул. Амундсена, 106
V. A. Shitov
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia
Author for correspondence.
Email: r.n.maksimov@urfu.ru
Россия, 620016, Екатеринбург,
ул. Амундсена, 106
References
- Dai J., Li J. Promising Magneto-Optical Ceramics for High Power Faraday Isolators // Scr. Mater. 2018. V. 155. P. 78–84. https://doi.org/10.1016/j.scriptamat.2018.06.031
- Vojna D., Slezak O., Lucianetti A., Mocek T. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices // Appl. Sci. 2019. V. 9. № 15. P. 3160. https://doi.org/10.3390/app9153160
- Carothers K.J., Norwood R.A., Pyun J. High Verdet Constant Materials for Magneto-Optical Faraday Rotation: A Review // Chem. Mater. 2022. V. 34. № 6. P. 2531–2544. https://doi.org/10.1021/acs.chemmater.2c00158
- Veber P., Velazquez M., Gadret G., Rytz D., Peltzc M., Decourta R. Flux Growth at 1230°C of Cubic Tb2O3 Single Crystals and Characterization of Their Optical and Magnetic Properties // CrystEngComm. 2015. V. 17. № 3. P. 492–497. https://doi.org/10.1039/C4CE02006E
- Ikesue A., Aung Y.L., Makikawa S., Yahagi A. Polycrystalline (TbxY1–x)2O3 Faraday Rotator // Opt. Lett. 2017. V. 42. № 21. P. 4399–4401. https://doi.org/10.1364/OL.42.004399
- Ikesue A., Aung Y.L., Makikawa S., Yahagi A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure // Materials. 2019. V. 12. № 3. P. 421. https://doi.org/10.3390/ma12030421
- Zinkevich M. Thermodynamics of Rare Earth Sesquioxides // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002
- Zhang J., Chen H., Wang J., Wang D., Han D., Zhang J., Wang S. Phase Transformation Process of Tb2O3 at Elevated Temperatures // Scr. Mater. 2019. V. 171. P. 108–111. https://doi.org/10.2139/ssrn.3391561
- Balabanov S.S., Permin D.A., Rostokina E.Ye., Egorov S.V., Sorokin A.A., Kuznetsov D.D. Synthesis and Structural Characterization of Ultrafine Terbium Oxide Powders // Ceram. Int. 2017. V. 43. № 18. P. 16569–16574. https://doi.org/10.1016/j.ceramint.2017.09.044
- Zhang J., Chen H., Wang J., Wang D., Han D., Zhang J., Wang S. Preparation of (Tb1–xLux)2O3 Transparent Ceramics by Solid Solution for Magneto-Optical Application // J. Eur. Ceram. Soc. 2020. V. 41. № 4. P. 2818–2825. https://doi.org/10.1016/j.jeurceramsoc.2020.12.034
- Yang M., Zhou D., Xu J., Tian T., Jia R., Wang Z. Fabrication and Magneto-Optical Property of Yttria Stabilized Tb2O3 Transparent Ceramics // J. Eur. Ceram. Soc. 2019. V. 39. № 15. P. 5005–5009. https://doi.org/10.1016/j.jeurceramsoc.2019.07.010
- Snetkov I.L., Permin D.A., Balabanov S.S., Palashov O.V. Wavelength Dependence of Verdet Constant of Tb3+:Y2O3 Ceramics // Appl. Phys. Lett. 2016. V. 108. № 16. P. 161905(1–3). https://doi.org/10.1063/1.4947432
- Gaume R., He Y., Markosyan A., Byer R.L. Effect of Si-Induced Defects on 1 µm Absorption Losses in Laser-Grade YAG Ceramics // J. Appl. Phys. 2012. V. 111. № 9. 093104. https://doi.org/10.1063/1.4709756
- Wang J., Yin D., Ma J., Liu P., Wang Y., Dong Z., Kong L.B., Tang D. Pump Laser Induced Photodarkening in ZrO2-Doped Yb:Y2O3 Laser Ceramics // J. Eur. Ceram. Soc. 2019. V. 39. № 2–3. P. 635–640. https://doi.org/10.1016/j.jeurceramsoc.2018.10.003
- Ikesue A., Aung Y.L. Synthesis of Yb:YAG Ceramics without Sintering Additives and Their Performance // J. Am. Ceram. Soc. 2017. V. 100. № 1. P. 26–30. https://doi.org/10.1111/jace.14588
- Yin D., Ma J., Liu P., Yao B., Wang J., Dong Z., Kong L.B., Tang D. Submicron-Grained Yb:Lu2O3 Transparent Ceramics with Lasing Quality // J. Am. Ceram. Soc. 2019. V. 102. № 5. P. 2587–2592. https://doi.org/10.1111/jace.16105
- Li Q., Wang J., Ma J., Ni M., Yang F., Liu P., Lee K.Y., Hsiang H.-I., Shen D., Tang D. Fabrication of High-Efficiency Yb:Y2O3 Laser Ceramics without Photodarkening // J. Am. Ceram. Soc. 2022. V. 105. № 5. P. 3375–3381. https://doi.org/10.1111/jace.18305
- Abu-Zied B.M., Mohamed A.-R.N., Asiri A.M. Effect of Thermal Treatment on the Formation, Textural and Electrical Conductivity Properties of Nanocrystalline Tb4O7 // J. Nanosci. Nanotechnol. 2015. V. 15. № 6. P. 4487–4492. https://doi.org/10.1166/jnn.2015.9605
- Fursikov P.V., Abdusalyamova M.N., Makhmudov F.A., Shairmardanov E.N., Kovalev I.D., Kovalev D.Yu., Morgunov R.B., Koplak O.V., Volodin A.A., Khodos I.I., Shulga Y.M. Structural Features and Magnetic Behavior of Nanocrystalline Powders of Terbium Oxide Prepared by the Thermal Decomposition of Terbium Acetate in Air // J. Alloys Compd. 2016. V. 657. P. 163–173. https://doi.org/10.1016/j.jallcom.2015.09.274
- Kai F., Bin L., Hongmei C., Shaofan W., Yan W., Yongxing L. Synthesis of Ultrafine TbO1.81 and Tb2O3 Powders for Magneto-Optical Application // J. Synth. Cryst. 2021. V. 50. № 1. P. 80–87.
- Kurland H.-D., Grabow J., Stotzel Chr., Muller F.A. Preparation of Ceramic Nanoparticles by CO2 Laser Vaporization // J. Ceram. Sci. Technol. 2014. V. 5. № 4. P. 275–280. https://doi.org/10.4416/JCST2014-00025
- Osipov V.V., Platonov V.V., Lisenkov V.V., Tikhonov E.V., Podkin A.V. Study of Nanoparticle Production from Yttrium Oxide by Pulse-Periodic Radiation of Ytterbium Fibre Laser // Appl. Phys. A. 2018. V. 124. P. 3(1–10). https://doi.org/10.1007/s00339-017-1348-9
- Snetkov I., Starobor A., Palashov O., Balabanov S., Permin D., Rostokina E. Thermally Induced Effects in a Faraday Isolator on Terbium Sesquioxide (Tb2O3) Ceramics // Opt. Mater. 2021. V. 120. P. 111466(1–4). https://doi.org/10.1016/j.optmat.2021.111466
- Глушкова В.Б. Полиморфизм окислов редкоземельных элементов. Л.: Наука, 1967. 132 с.
- Porter D.A., Easterling K.E., Sherif M.Y. Phase Transformation in Metals and Alloys. 3rd edn. Boca Raton: CRC Press, 2009. 521 p.
- Ishikawa T., Koyama C., Oda H., Saruwatari H., Paradis P.-F. Status of the Electrostatic Levitation Furnace in the ISS – Surface Tension and Viscosity Measurements // Int. J. Microgravity Sci. Appl. 2022. V. 39. № 1. P. 390101(1–12). https://doi.org/10.15011/jasma.39.390101
- Hoekstra H.R. Phase Relationships in the Rare Earth Sesquioxides at High Pressure // Inorg. Chem. 1966. V. 5. № 5. P. 754–757. https://doi.org/10.1021/ic50039a013
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений: Пер. с англ. М.: Мир, 1991. 536 с.
- Unal F. A Novel Strong Cyan Luminescence Emission of Tb2O3 Particles // Research Square. 2021. https://doi.org/10.21203/rs.3.rs-319887/v1
- Unal F., Kaya F. Modelling of Relation between Synthesis Parameters and Average Crystallite Size of Yb2O3 Nanoparticles Using Box-Behnken Design // Ceram. Int. 2020. V. 46. № 17. P. 26800–26808. https://doi.org/10.1016/j.ceramint.2020.07.155
- Cui F., Yu J., Cui T. Decoration of Silica with Tb2O3 Nanoparticles by a Facile Method Free of Additional Catalyst // Chem. Lett. 2015. V. 44. № 11. P. 1500–1502. https://doi.org/10.1246/cl.150722
- Куражковская В.С., Боровикова Е.Ю. Инфракрасная и мессбауэровская спектроскопия кристаллов. М.: Геологический факультет, 2008. 98 с.
- MacChesney J.B., Williams H.J., Sherwood R.C., Potter J.F. Preparation and Low Temperature Magnetic Properties of the Terbium Oxides // J. Chem. Phys. 1966. V. 44. P. 596–601. https://doi.org/10.1063/1.1726730
- Mugiraneza S., Hallas A.M. Tutorial: a Beginner’s Guide to Interpreting Magnetic Susceptibility Data with the Curie-Weiss Law // Commun. Phys. 2022. V. 5. P. 1–12. https://doi.org/10.1038/s42005-022-00853-y
- Vickery R.C., Ruben A. Magnetic Susceptibilities of Praseodymium and Terbium Oxides // J. Chem. Soc. 1959. P. 510–513. https://doi.org/10.1039/jr9590000510
- Baran S., Duraj R., Hoser A., Penc B., Szytula A. Crystal Structure and Magnetic Properties of Tb11O20 // Acta. Phys. Pol. 2013. V. 123. P. 98–100. https://doi.org/10.12693/APhysPolA.123.98
- Balabanov S.S., Permin D.A., Rostokina E.Ye., Egorov S.V., Sorokin A.A. Sinterability of Nanopowders of Terbia Solid Solutions with Scandia, Yttria, and Lutetia // J. Adv. Ceram. 2018. V. 7. P. 362–369. https://doi.org/10.1007/s40145-018-0286-0
Supplementary files
