Structure and Phase Formation in Arc PVD Zr–B–Si–C–Ti–(N) Coatings
- Authors: Belov D.S.1, Blinkov I.V.1, Sergevnin V.S.1, Chernogor A.V.1, Demirov A.P.1, Polyanskii A.M.2
-
Affiliations:
- Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
- Glushko NPO Energomash, 141400, Khimki, Moscow oblast, Russia
- Issue: Vol 59, No 2 (2023)
- Pages: 162-168
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/140125
- DOI: https://doi.org/10.31857/S0002337X23020033
- EDN: https://elibrary.ru/YCNWKG
- ID: 140125
Cite item
Abstract
Zr–B–Si–C–Ti and Zr–B–Si–C–Ti–N coatings have been produced for the first time by an arc physical vapor deposition process in a residual argon + nitrogen atmosphere. The Zr–B–Si–C–Ti coating had an amorphous–nanocrystalline structure. Nanocrystallites were formed in the Ti–B–C system, and the amorphous component of the material was formed by Zr–B–C and Si–C phases. The coating of the latter system had a predominantly amorphous structure (amorphous content of ~85–93%) based on titanium nitride with Ti–B and Ti–C bonds, zirconium carboboronitride (Zrx(C,N,B)y), zirconium boride, and silicon carbonitride.
About the authors
D. S. Belov
Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
Email: dm.blv@yandex.ru
Россия, 119049, Москва,
Ленинский пр., 4
I. V. Blinkov
Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
Email: dm.blv@yandex.ru
Россия, 119049, Москва,
Ленинский пр., 4
V. S. Sergevnin
Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
Email: dm.blv@yandex.ru
Россия, 119049, Москва,
Ленинский пр., 4
A. V. Chernogor
Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
Email: dm.blv@yandex.ru
Россия, 119049, Москва,
Ленинский пр., 4
A. P. Demirov
Moscow Institute of Steel and Alloys (National University of Science and Technology), 119049, Moscow, Russia
Email: dm.blv@yandex.ru
Россия, 119049, Москва,
Ленинский пр., 4
A. M. Polyanskii
Glushko NPO Energomash, 141400, Khimki, Moscow oblast, Russia
Author for correspondence.
Email: dm.blv@yandex.ru
Россия, 141400, Московская обл., Химки,
ул. Бурденко, 1
References
- Monteverde F., Scatteia L. Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application // J. Am. Ceram. Soc. 2007. V. 90. P. 1130–1138.
- Chamberlain A., Fahrenholtz W., Hilmas G., Ellerby D. Oxidation of ZrB2–SiC Ceramics under Atmospheric and Reentry Conditions // Refract. Appl. Trans. 2005. V. 1. № 2. P. 2–8.
- Воронов В.А., Лебедев Ю.Е., Чайников А.С., Ткаленко Д.М., Шавнев А.А. Влияние вискерсов карбида кремния на физико-механические свойства керамического композиционного материала ZrB2/SiC // Неорган. материалы. 2022. Т. 58. № 1. С. 110–116. https://doi.org/10.31857/S0002337X22010134
- Yang X., Wei L., Song W. ZrB2/SiC as a Protective Coating for C/SiC Composites: Effect of High Temperature Oxidation on Mechanical Properties and Anti–Ablation Property // Composites, Part B. 2013. V. 45. P. 1391–1396. https://doi.org/10.1016/j.compositesb.2012.07.007
- Wang D., Zeng Y., Xiong X. Preparation and Ablation Properties of ZrB2–SiC Protective Laminae for Carbon/Carbon Composites // Ceram. Int. 2014. V. 40. P. 14215–14222. https://doi.org/10.1016/j.ceramint.2014.06.010
- Zou X., Fu Q., Liu L. ZrB2–SiC Coating to Protect Carbon/Carbon Composites Against Ablation // Surf. Coat. Technol. 2013. V. 226. P. 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027
- Krella A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review // Coat. 2020. V. 10. P. 921. https://doi.org/10.3390/coatings10100921
- Brown I.G. Cathodic Arc Deposition of Films // Ann. Rev. Mater. Sci. 1998. V. 28. P. 243–269. https://doi.org/10.1146/annurev.matsci.28.1.243
- Anders A.A. Review Comparing Cathodic Arcs and High-Power Impulse Magnetron Sputtering (HiPIMS) // Surf. Coat. Technol. 2014. V. 257. P. 308–325. https://doi.org/10.1016/j.surfcoat.2014.08.043
- Takikawa H. Review of Cathodic Arc Deposition for Preparing Droplet–Free Thin Films // Int. Symp. on Discharges and Elect. Insulation in Vac. 2007. V. 35. P. 992–999. https://doi.org/10.1109/TPS.2007.897907
- Sanders D.M., Anders A. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium // Surf. Coat. Technol. 2000. V. 133–134. P. 78–90. https://doi.org/10.1016/S0257-8972(00)00879-3
- Ian C., Madsen I., Nicola V.Y., Scarlett I., Arnt K. Description and Survey of Methodologies for the Determination of Amorphous Content via X-ray Powder Diffraction // Z. Kristallogr. 2011. V. 226. P. 944–955. https://doi.org/10.1524/zkri.2011.1437
- ASM Metals Handbook. V. 12. Fractography, ASM, 2002.
- David B.W., Carter C.B. Transmission Electron Microscopy. A Textbook for Materials Science: N.Y.: Springer, 2009.
- Jutter B., Kleberg I. The Retrograde Motion of Arc Cathode Spots in Vacuum // J. Phys. D: Appl. Phys. 2000. V. 33 P. 2025–2036.
- Beilis I. Vacuum Arc Cathode Spot Theory: History and Evolution of the Mechanisms // IEEE Trans. Plasma Sci. 2019. V. 47. P. 3412–3433. https://doi.org/10.1109/TPS.2019.2904324
- Craciun V., McCumiskey E., Hanna M. Very Hard ZrC Thin Films Grown by Pulsed Laser Deposition // J. Eur. Ceram. Soc. 2013. V. 33. P. 2223–2226. https://doi.org/10.1016/j.jeurceramsoc.2013.01.001
- Badrinarayanan S., Sinha S. XPS Studies of Nitrogen Ion Implanted Zirconium and Titanium // J. Solid State Chem. 1989. V. 49. P. 303–309.
- Chen L., Goto T., Hirai T. State of Boron in Chemical Vapour–Deposited SiC–B Composite Powders // J. Mater. Sci. Lett. 1990. V. 9. P. 997–999. https://doi.org/10.1007/BF00727857
- Didziulis S., Fleischauer P. Effects of Chemical Treatments on SiC Surface Composition and Subsequent MoS2 Film Growth // Langmuir. 1990. V. 6. P. 621–627. https://doi.org/10.1021/la00093a017
- Yan S., Fu T., Wang R., Tian C., Wang Z., Huang Z., Yang B., Fu D. Deposition of CrSiN/AlTiSiN Nano-Multilayer Coatings by Multi-Arc Ion Plating Using Gas Source Silicon // Nucl. Instrum. Methods Phys. Res, Sect. B. 2013. V. 324. P. 35–40. https://doi.org/10.1016/j.nimb.2013.01.084
- Dreiling I., Raisch C., Glaser J., Stiens D., Chassé T. Characterization and Oxidation Behavior of MTCVD Ti–B–N Coatings // Surf. Coat. Technol. 2011. V. 206. P. 479–486. https://doi.org/10.1016/j.surfcoat.2011.07.067
- Ettmayer P., Lengauer W. Nitrides // Ullmann’s Encyclopedia of Ind. Chem. 2000. https://doi.org/10.1002/14356007.a17_341
- Shatynski S.R. The Thermochemistry of Transition Metal Carbides // Oxid. Met. 1979. V. 13. P. 105–118. https://doi.org/10.1007/BF00611975
- Li Y.-F., Xu H., Xia Q.-L., Liu X.-L. First-Principles Calculation of Structural and Thermodynamic Properties of Titanium Boride // J. Cent. South Univ. Technol. 2011. V. 18. P. 1773–1779. https://doi.org/10.1007/s11771-011-0901-5
- Zhu Y., Cheng L., Li M., Ma B., Liu Y., Zhang L. The Synthesis and Characterization of CVD ZrB2 Coating from ZrCl4–BCl3–H2–Ar System // Ceram. Int. 2018. V. 44. P. 2002–2010. https://doi.org/10.1016/j.ceramint.2017.10.145
- Peshev P. A Thermodynamic Estimation of the Chemical Vapor Deposition of Some Borides // J. Solid State Chem. 2000. V. 154. P. 157–161. https://doi.org/10.1006/jssc.2000.8828
- Prieto P., Kirby R.E. X-ray Photoelectron Spectroscopy Study of the Difference between Reactively Evaporated and Direct Sputter-Deposited TiN Films and Their Oxidation Properties // J. Vac. Sci. Technol., A. 1995. V. 13. P. 2819. https://doi.org/10.1116/1.579711
- Mavel G., Escard J., Costa P. ESCA (Electron Spectroscopy for Chemical Analysis) Study of Metal Borides // J. Cast., Surf. Sci. 1973. V. 35. P. 109–116.
- Galuska A.A., Uht J.C., Marquez N. Reactive and Nonreactive Ion Mixing of Ti Films on Carbon Substrates // J. Vac. Sci. Technol., A. 1988. V. 6. P. 110–122. https://doi.org/10.1116/1.574992
- Chastain R.C., King Jr. Handbook of X-ray Photoelectron Spectroscopy // N.Y.: Perkin-Elmer, 1992.
Supplementary files
