Preparation and Electrorheological Properties of Anhydrous Aluminum Orthophosphate
- Authors: Eshchenko L.S.1, Korobko E.V.2, Paniatouski O.V.1
-
Affiliations:
- Belarussian State Technological University, 220006, Minsk, Belarus
- Lykov Institute of Heat and Mass Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus
- Issue: Vol 59, No 1 (2023)
- Pages: 77-82
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/140124
- DOI: https://doi.org/10.31857/S0002337X23010074
- EDN: https://elibrary.ru/OPMZBT
- ID: 140124
Cite item
Abstract
We have studied the process and products of thermal dehydration of highly dispersed monoclinic AlРO4⋅2Н2О prepared by crystallization from an aluminum phosphate solution at 95–97°C and demonstrated the influence of isothermal or polythermal heat treatment on the formation of AlPO4 polymorphs similar in structure to α-quartz or tridymite. The formation of these phases has been shown to be related to changes in the oxygen coordination of aluminum as a result of the detachment of highly polarized molecules of water of crystallization in the composition of AlРO4⋅2Н2О. We have assessed the electrorheological (ER) activity of AlPO4 as a disperse phase of electrorheological fluids, with a weight fraction from 10 to 20%, and found out how AlPO4 preparation conditions influence the shear stress of the electrorheological fluids in electric fields from 3.5 to 4.0 kV/mm. Suspensions containing tridymite AlPO4 particles prepared under isothermal conditions have been shown to exhibit a stronger ER effect, at a level from 420 to 620 Pa. The ER activity of AlPO4 has been shown to increase with increasing heat treatment temperature and time, which is attributable to the formation of a more defect-rich particle surface due to intrinsic thermal disorder.
About the authors
L. S. Eshchenko
Belarussian State Technological University, 220006, Minsk, Belarus
Email: oleg.ponyatovskiy@gmail.com
Беларусь,
ул. Свердлова, 13а, Минск
E. V. Korobko
Lykov Institute of Heat and Mass Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus
Email: oleg.ponyatovskiy@gmail.com
Беларусь, 220072, Минск, ул. П. Бровки, 15
O. V. Paniatouski
Belarussian State Technological University, 220006, Minsk, Belarus
Author for correspondence.
Email: oleg.ponyatovskiy@gmail.com
Беларусь,
ул. Свердлова, 13а, Минск
References
- Hao T. Electrorheological Fluids: The Non-aqueous Suspensions, (Studies in Interface Science). V. 22. Cambridge, Massachusetts: Elsevier, 2005. 578 p.
- Hwang Y.H. et al. An Electrorheological Spherical Joint Actuator for a Haptic Master with Application to Robot-Assisted Cutting Surgery // Sens. Actuators, A. 2016. V. 249. P. 163–171. https://doi.org/10.1016/j.sna.2016.08.033
- Wang L., Gong X., Wen W. Electrorheological Fluid and its Applications in Microfluidics // Top Curr. Chem. 2011. V. 304. P. 91–115. https://doi.org/10.1007/128_2011_148
- Chiolerio A., Quadrelli M.B. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics // Adv. Sci. 2017. V. 4. № 7. P. 1700036 (18). https://doi.org/10.1002/advs.201700036
- Hines L. et al. Soft Actuators for Small-Scale Robotics // Adv. Mater. 2017. V. 29. P. 1603483 (43). https://doi.org/10.1002/adma.201603483
- Hong J.Y. et al. Geometrical Study of Electrorheological Activity with Shape-Controlled Titania-Coated Silica Nanomaterials // J. Colloid Interface Sci. 2010. V. 347. № 2. P. 177–182. https://doi.org/10.1016/j.jcis.2010.03.054
- Block H., Kelly J.P. Electro-Rheology // J. Phys. D: Appl. Phys. 1988. V. 21. P. 1661–1677.
- Ещенко Л.С., Лаевская Е.В., Коробко Е.В., Новикова З.А. Получение наполнителей для ЭРС на основе гидратированного ортофосфата алюминия // Тр. БГТУ. Сер. Химия. 2015. № 3. С. 56–63.
- Лапко К.Н., Макатун В.Н., Уголев И.И. Протонная структура кристаллического двуводного дигидротриполифосфата алюминия // Журн. неорган. химии. 1980. Т. 25. № 6. С. 1688–1691.
- Лаевская Е.В., Ещенко Л.С., Коробко Е.В., Новикова З.А., Унал Х.И. Влияние структуры дигидрата ортофосфата алюминия на его электрореологическую активность // Тепло- и массоперенос-2014: сб. науч. трудов. Минск: Институт тепло- и массопереноса имени А.В. Лыкова НАН Беларуси, 2015. С. 263–270.
- Ещенко Л.С., Понятовский О.В. Особенности синтеза высокодисперсных алюмофосфатов состава AlPO4·nH2O // Вес. Нац. акад. Навук Беларусі. Сер. хім. навук. 2021. Т. 57. № 3. С. 310–319. https://doi.org/10.29235/1561-8331-2021-57-3-310-319
- Kotova N.P., Ivanov L.P. Stability of Strontium Aluminophosphates in the System SrO–Al2O3–P2O5–H2O at T = 25–350°C and P = Psat –500 bar // Geochem. Int. 2000. V. 38. P. 138−143.
- d’Yvoire F. Etude des Phosphates d’Aluminium et de Fer Trivalent. I. L’orthophosphate Neutre d’Aluminium // Bull. Soc. Chim. Fr. 1961. P. 1762−1776.
- Мелихов И.В. Физико-химическая эволюция твердого вещества. М.: БИНОМ. Лаборатория знаний, 2006. 309 с.
- Ярославцев А.Б. Химия твердого тела. М.: Научный мир, 2009. 328 с.
Supplementary files
