Phase Formation during Aluminothermic Reduction of Titanium from Its Oxides with the Anatase and Rutile Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Low-temperature phase formation processes (below 1270–1450°C) underlying aluminothermic reduction of titanium from different TiO2 polymorphs—stable rutile and metastable anatase—have been studied during continuous heating and isothermal heat treatment. Interaction between the components has been investigated at TiO2/Al molar ratios of 0.23 and 0.43 using thermal analysis and X-ray diffraction. The results demonstrate that, in the case of continuous heating of anatase + aluminum powders with TiO2/Al = 0.43, the reduction process begins at a temperature of 943°C and does not reach completion up to 1270°C, resulting in the formation of the intermetallic phase Al3Ti, Al2O3, and intermediate titanium oxides (Ti0.78O0.937 and (Ti0.99Al0.01)2O3). Increasing the fraction of aluminum in the mixture (TiO2/Al = 0.23) increases the degree of reduction of titanium, which shows up as an increase in the amount of intermetallic phases (Al3Ti, Al2Ti, Al1.1Ti0.9, and AlTi3) in the reduction products and a decrease in the amount of intermediate titanium oxides. Rutile has been shown to have low reactivity: heating of rutile + aluminum mixtures to 1450°C leads to the formation of many intermediate titanium oxides along with a small amount of Al3Ti and AlTi3. The results have been confirmed by isothermal heat treatment (1400°C, 60 min) of mixtures of anatase and rutile with aluminum. The anatase-to-rutile polymorphic transformation during heating in flowing argon has been shown to occur in the range 622–913°C. During the reduction process, molten aluminum inhibits the phase transition of anatase, but its reactivity remains higher than that of rutile

About the authors

R. I. Gulyaeva

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

Email: gulroza@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

K. V. Pikulin

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

Email: pikulin.imet@gmail.com
Россия, 620016, Екатеринбург, ул. Амундсена, 101

A. N. Mansurova

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

Email: pikulin.imet@gmail.com
Россия, 620016, Екатеринбург, ул. Амундсена, 101

S. M. Pikalov

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

Email: pikulin.imet@gmail.com
Россия, 620016, Екатеринбург, ул. Амундсена, 101

L. I. Leont’ev

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

Author for correspondence.
Email: pikulin.imet@gmail.com
Россия, 620016, Екатеринбург, ул. Амундсена, 101

References

  1. Yamaguchi M., Inui H., Ito K. High-Temperature Structural Intermetallics // Acta Mater. 2000. V. 48. P. 307–322. https://doi.org/10.1016/S1359-6454(99)00301-8
  2. Лякишев Н.П., Плинер Ю.Л., Игнатенко Г.Ф., Лаппо С.И. Алюминотермия. М.: Металлург, 1978. 424 с.
  3. Мурач Н.Н., Мусиенко В.Т. Алюминотермия титана. М.: ЦИИНцветмет, 1958. 52. с.
  4. Плинер Ю.Л., Сучильников С.И., Рубинштейн Е.А. Алюминотермическое производство ферросплавов и лигатур. М.: Металлургия, 1963. 174 с.
  5. Bose P., Pradhan S.K., Suchitra Sen. Rietveld Analysis of Polymorphic Transformations of Ball Milled Anatase TiO2 // Mater. Chem. Phys. 2003. V. 80. P. 73–81. https://doi.org/10.1016/S0254-0584(02)00463-7
  6. Hanaor D.A.N., Sorrell Ch.C. Review of the Anatase to Rutile Phase Transformation // J. Mater. Sci. 2011. V. 46. P. 855–874. https://doi.org/10.1007/s10853-010-5113-0
  7. Večera J., Dohnalová Z., Mikulášek P. Anatase-Rutile Transformation at the Synthesis of Rutile Pigments (Ti,Cr,Nb)O2 and Their Color Properties // J. Therm. Anal. Calorim. 2013. V. 113. P. 61–67. https://doi.org/10.1007/s10973-012-2901-6
  8. Подергин В.А. Алюминий–титан диоксид, Al–TiO2 // Металлотермические системы. М.: Металлургия, 1992. С. 87–91.
  9. Kobyakov V.P., Barinova T.V. Combustion of TiO2–Al Thermit Mixtures Containing C and Cs in Air: Phase Composition of Products // Int. J. Self-Propag. High-Temp. Synth. 2011. V. 20. № 3. P. 161–165. https://doi.org/10.3103/S1061386211030046
  10. Красиков С.А., Надольский А.Л., Пономаренко А.А., Ситникова О.А., Жидовинова С.В. Металлотермическое получение сплавов титан-алюминий в контролируемых температурных условиях // Цв. металлы. 2012. № 6. С. 68–71.
  11. Fan Run-hua, Liu Bing, Bi Jian-qiang, Yin Yan-sheng. Kinetic Evaluation of Combustion Synthesis 3TiO2 + + 7Al → 3TiAl + 2Al2O3 Using Non-Isothermal DSC Method // Mater. Chem. Phys. 2005. V. 91. P. 140–145. https://doi.org/10.1016/j.matchemphys.2004.11.004
  12. Самсонов Г.В., Синельникова В.С. Алюминотермическое восстановление окислов титана // Металлотермические процессы в химии и металлургии. Материалы конф. Новосибирск: Наука, 1971. С. 32–38.
  13. Kamali A.R., Fahim J. Mechanically Activated Aluminothermic Reduction of Titanium Dioxide // Int. J. Self-Propag. High-Temp. Synth. 2009. V. 18. № 1. P. 7–10. https://doi.org/10.3103/S1061386209010026
  14. Hassan-Pour S., Vonderstein C., Achimovičova M., Vogt V., Gock E., Friedrich B. Aluminothermic Production of Titanium Alloys (Part 2): Impact of Activated Rutile on Process Sustainability // Metall. Mater. Eng. 2015. V. 21. № 2. P. 101–114. https://doi.org/10.30544/100
  15. Claussen N., Garcia D.E., Janssen R. Reaction Sintering of Alumina-Aluminide Alloys (3A) // J. Mater. Res. 1996. V. 11. P. 2884–2888. https://doi.org/10.1557/JMR.1996.0364
  16. Maity P.C., Chakraborty P.N., Panigrahi S.C. Processing and Properties of Al–Al2O3 (TiO2) in situ Particle Composite // J. Mater. Process. Technol. 1995. V. 53. P. 857–870. https://doi.org/10.1016/0924-0136(94)01757-R
  17. Powder Diffraction File PDF2+ ICDD. 2018.
  18. Иверонова В.И., Ревкевич Г.П. Теория рассеяния рентгеновских лучей. Изд. 2. М.: Изд-во МГУ, 1978. 278 с.
  19. Пойлов В.З., Лобанов С.А., Казанцев А.Л., Смирнов С.А., Исламов К.Ф. Получение ультрадиспернсного диоксида титана методом термогидролиза // Вестн. Пермского гос. техн. ун-та. Хим. технология и биотехнология. 2010. № 11. С. 5–14.
  20. Reidy D.J., Holmes J.D., Morris M.A. The Critical Size Mechanism for the Anatase to Rutile Transformation in TiO2 and Doped-TiO2 // J. Eur. Ceram. Soc. 2006. V. 26. P. 1527–1534. https://doi.org/10.1016/j.jeurceramsoc.2005.03.246
  21. Локшин Э.П., Седнева Т.А. Особенности перехода анатаза в рутил // Журн. общ. химии. 2011. Т. 81. № 9. С. 1409–1414.
  22. Дорошева И.Б., Валеева А.А., Ремпель А.А., Тресцова М.А., Утепова И.А., Чупахин О.Н. Синтез и физико-химические свойства наноструктурированного TiO2 с повышенной фотокаталитической активностью // Неорган. материалы. 2021. Т. 57. № 5. С. 528–535. https://doi.org/10.31857/S0002337X2105002X
  23. Schuster J.C., Palm M. Reassessment of the Binary Aluminum-Titanium Phase Diagram // J. Phase Equilib. Diffus. 2006. V. 27. P. 255–277. https://doi.org/10.1361/154770306X109809
  24. Barrios de Arenas I. Reactive Sintering of Aluminum Titanate // Sintering of Ceramics – New Emerging Techniques / Ed. Lakshmanan A. London: InTech. 2012. P. 501–526.
  25. Horvitz D., Gotman I., Gutmanas E.Y., Claussen N. In situ Processing of Dense Al2O3–Ti Aluminide Interpenetrating Phase Composites // J. Eur. Ceram. Soc. 2002. V. 22. P. 947–954. https://doi.org/10.1016/S0955-2219(01)00396-X
  26. Lee Jong Hyeon, Nersisyan Hayk, Lim Kyu-Seok, Kim Wan-Bae, Choi Woo-Seok. Combustion-Aluminothermic Reduction of TiO2 to Produce Titanium Low Oxygen Suboxides // Metall. Mater. Trans. B. 2021. V. 52. P. 4012–4022. https://doi.org/10.1007/s11663-021-02316-1
  27. Okamoto H. O-Ti (Oxygen-Titanium) // J. Phase Equilib. Diffus. 2011. V. 32. № 5. P. 473–474. https://doi.org/10.1007/s11669-011-9935-5
  28. Любимов В.Д., Алямовский С.И., Швейкин Г.П. О механизме восстановления окислов титана // Журн. неорган. химии. 1981. Т. 26. № 9. С. 2314–2322.
  29. Казенас Е.К., Чижиков Д.М. Давление и состав пара над окислами химических элементов. М.: Наука, 1976. 176 с.
  30. Michael Hoch, Herrick L. Johnston. Formation Stability and Crystal Structure of the Solid Aluminum Suboxide: Al2O and AlO // J. Am. Chem. Soc. 1954. V. 76. № 9. P. 2560–2561. https://doi.org/10.1021/ja01638a076
  31. Wefers K., Misra Ch. Oxides and Hydroxides of Aluminum. Pittsburgh: Alcoa Laboratories, 1987. 100 p.
  32. Червонный А.Д. Состав газовой фазы над Al2O3 при 2300–2600 K, энтальпии атомизации AlO, Al2O, Al2O2 // Журн. неорган. химии. 2010. Т. 55. № 4. С. 609–612.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (142KB)
3.

Download (62KB)
4.

Download (118KB)
5.

Download (187KB)
6.

Download (220KB)
7.

Download (143KB)

Copyright (c) 2023 Р.И. Гуляева, К.В. Пикулин, А.Н. Мансурова, С.М. Пикалов, Л.И. Леонтьев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».