Исследование структурных характеристик и деформационного поведения пористого титана, полученного методом спекания

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Проведено исследование структурных особенностей порошков ПТМ-1 и ПТС-1 и пористых материалов на их основе, полученных методом спекания. Определены количественные характеристики порового пространства спеченных образцов. Показана связь макро- и микроструктурных особенностей полученных пористых сплавов с их деформационно-прочностными параметрами. Использованы методы растровой электронной микроскопии, рентгенографического анализа, стереометрические методики, прочностные характеристики исследованы в экспериментах на сжатие. Обнаружено, что пористый материал, полученный спеканием порошка титана марки ПТМ-1, имеет более высокие значения основных прочностных и деформационных характеристик. Это связано с меньшей пористостью по сравнению с образцами ПТC-1, а также с процессами дисперсного упрочнения частицами фазы TiC при его структурообразовании.

作者简介

С. Аникеев

Национальный исследовательский Томский государственный университет

编辑信件的主要联系方式.
Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

Н. Артюхова

Национальный исследовательский Томский государственный университет

Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

М. Кафтаранова

Национальный исследовательский Томский государственный университет

Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

В. Ходоренко

Национальный исследовательский Томский государственный университет

Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

А. Гарин

Национальный исследовательский Томский государственный университет

Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

Е. Марченко

Национальный исследовательский Томский государственный университет

Email: Anikeev_Sergey@mail.ru
Россия, 634050, Томск, пр. Ленина, 36

参考

  1. Jackson M.J., Kopac J., Balazic M., Bombac D., Brojan M., Kosel F. Titanium and Titanium Alloy Applications in Medicine // Surg. Tools Med. Devices. 2016. P. 475–517. https://doi.org/10.1007/978-3-319-33489-9_15
  2. Ik-Hyun O., Haruhiko S., Naoyuki N., Shuji H. Microstructures and Mechanical Properties of Porosity-Graded Pure Titanium Compacts // Mater. Trans. 2003. V. 44. № 4. P. 657–660. https://doi.org/10.2320/matertrans.44.657
  3. Zschommler Sandim H.R., Morante B.V., Suzuki P.A. Kinetics of Thermal Decomposition of Titanium Hydride Powder Using in situ High-Temperature X-ray Diffraction (HTXRD) // J. Mater. Res. 2005. V. 8. № 3. P. 293–297. https://doi.org/10.1590/S1516-14392005000300012
  4. In-Shup A., Tek-Kyoung S., Sung-Yeal B., Ho-Jung C., Dong-Kyu P. Synthesis of Titanium Carbide by Thermo-Chemical Methods with TiH2 and Carbon Black Powders // Met. Materials Int. 2006. V. 12. № 3. P. 249–253. https://doi.org/10.1007/BF03027539
  5. Vasconcellos L.-M.-R., Leite D.-de O., Nascimento F.-O., de Vasconcellos L. G.-O., etc. Porous Titanium for Biomedical Applications: An Experimental Study on Rabbits // Med. Oral, Patol. Oral Cirygia Bucal. 2010. V. 15. № 2. P. 407–412. https://doi.org/10.4317/medoral.15.e407
  6. Frykholm R., Brash B. Press and Sintering of Titanium // Key Eng. Mater. 2015. P. 1–11. doi: 10.4028/ href='www.scientific.net/KEM.704.369' target='_blank'>www.scientific.net/KEM.704.369
  7. Krinitcyn M.G., Pribytkov G.A., Korosteleva E.N. Structure of Sintered Ti – TiC Materials // Appl. Mech. Mater. 2014. V. 682. P. 127–131. https://doi.org/10.4028/www.scientific.net/AMM.682.127
  8. Назаренко В.А. Материалы на основе титана, полученные методами порошковой металлургии // Вестн. донбасской машинообувной технологии. 2010. Т. 2. № 19. С. 203–207.
  9. Stráský J., Kozlík J., Bartha K., Preisler D., Chráska T. Sintering of Ti-Based Biomedical Alloys with Increased Oxygen Content from Elemental Powders // The 14th World Conference on Titanium. MATEC Web of Conferences 321. 2020. 05010. https://doi.org/10.1051/matecconf/202032105010
  10. Milenov T., Terziyska P., Avdeev G. et al. Structure and Phase Composition Study of Heavy Doped with Carbon Thin Films of TiO2: C Deposited by RF Magnetron Sputtering // Russ. J. Inorg. Chem. 2022. V. 67. P. 1509–1520. https://doi.org/10.1134/S0036023622100333
  11. Kamynina O.K., Kravchuk K.S., Lazov M.A. et al. Effect of Surface Roughness on the Properties of Titanium Materials for Bone Implants // Russ. J. Inorg. Chem. 2021. V. 61. P. 1073–1078. https://doi.org/10.1134/S0036023621080106
  12. Pease L.F. III, West W.G. Fundamentals of Powder Metallurgy: Metal Powder Industries Federation, 2002. 452 p. https://doi.org/10.2298/SOS0401054P
  13. Zhao Q., Bolzoni L., Chen Y., Xu Y., Torrens R., Yang F. Processing of Metastable Beta Titanium Alloy: Comprehensive Study on Deformation Behavior and Exceptional Microstructure Variation Mechanisms // J. Mater. Sci. Technol. 2022. V. 126. P. 22–43. https://doi.org/10.1016/j.jmst.2022.02.050
  14. Шаповалова О.М., Бабенко Е.П. Исследование структуры и свойств кристаллов рафинированного титана повышенной частоты при нагреве // Вестн. двигателестроения. 2009. № 1. С. 134–138.
  15. Шаповалова О.М., Бабенко Е.П. Система исследования порошковых материалов // Проблемы cовременного материаловедения. 2001. С. 33–34.
  16. Кисеев В.М., Непомнящий А.С. Способ получения пористого титана. RU 2407817 C2, 2010.
  17. Krishna E.S., Suresh G. Bioactive Titanium-Hydroxyapatite Composites by Powder Metallurgy Route // Biointerface Res. Appl. Chem. 2022. V. 12. № 4. P. 5375–5383. https://doi.org/10.33263/BRIAC124.53755383
  18. Сенкевич К.С. Способ получения пористых изделий из быстрозакаленных порошков титана и его сплавов. RU 2641592 C2, 2018.
  19. Vander Voort G. Metallographic Preparation of Titanium and its Alloys // Solutions Mater. Prep., Test. Anal. 2014. V. 3. № 3. P. 828–834.
  20. Froes F.H., Mashl S.J., Moxson V.S., Hebeisen J.C., Duz V.A. The Technologies of Titanium Powder Metallurgy // J. Minerals. 2004. V. 56. P. 46–48.
  21. Robertson I.M., Schaffer G.B. Comparison of Sintering of Titanium and Titanium Hydride Powders // Powder Metall. 2010. V. 53. № 1. P. 12–19. https://doi.org/10.1179/003258909X12450768327063
  22. Blaine D.C., Heleon H.B., Laubscher H.H. Process Models for Press-and-Sinter Titanium // Adv. Mater. Res. 2014. V. 1019. P. 231–240. doi: 10.4028/ href='www.scientific.net/AMR.1019.231' target='_blank'>www.scientific.net/AMR.1019.231
  23. Sun P., Fang Z.Z., Zhang Y., Xia Y. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder // JOM. 2017. V. 15. P. 1853–1860. https://doi.org/10.1007/s11837-017-2513-5
  24. Whittaker D. Powder Processing, Consolidation and Metallurgy of Titanium // Powder Metall. 2012. V. 55. № 1. P. 6–10. https://doi.org/10.1179/174329012X13297486041231
  25. Lei Ch., Du Y., Zhu M., Huo W., Wu H., Zhang Y. Microstructure and Mechanical Properties of in situ TiC/Ti Composites with a Laminated Structure Synthesized by Spark Plasma Sintering // Mater. Sci. Eng., A. 2021. V. 812. P. 141136. https://doi.org/10.1016/j.msea.2021.141136
  26. Шляпин С.Д., Серов М.М., Гусев Д.Е., Федорова Л.В. Получение, структура и свойства пористых материалов из титановых волокон и проволоки // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2016. T. 4. С. 76–85. https://doi.org/10.17073/1997-308X-2016-4-76-85
  27. Gonçalves V.R.M., Çaha I., Alves A.C., Toptan F., Rocha L.A. Improved Tribocorrosion Behavior Obtained by in-situ Precipitation of Ti2C in Ti–Nb Alloy // Metals. 2022. V. 12. P. 2–17. https://doi.org/10.3390/met12060908
  28. Priti W., Drew R., Root J., Yue S. Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Compounsites // Acta Mater. 2020. V. 48. № 7. P. 1443–1450. https://doi.org/10.1016/S1359-6454(99)00453-X
  29. Zhang C., Zhang L., Liu L., Linwei Lv., Gao L., Liu N., Wang X., Ye J. Mechanical Behavior of a Titanium Alloy Scaffold Mimicking Trabecular Structure // J. Orthop. Surg. Res. 2020. V. 15. № 40. P. 1–11. https://doi.org/10.1186/s13018-019-1489-y
  30. Li B.Q., Wang C.Y., Lua X. Effect of Pore Structure on the Compressive Property of Porous Ti Produced by Powder Metallurgy Technique // Mater. Des. 2013. V. 50. P. 613–619. https://doi.org/10.1016/j.matdes.2013.02.082
  31. Chai H.W., Xie Z.L., Feng Z.D., Luo S.N., Huang J.Y. Three-Dimensional Deformation Dynamics of Porous Titanium under Uniaxial Compression // Mater. Charact. 2021. V. 182. 111494. https://doi.org/10.1016/j.matchar.2021.111494
  32. Симонов Ю.Н., Георгиев М.Н., Симонов М.Ю. Основы физики и механики разрушения. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2012. 203 с.
  33. Hull D., Bacon D.J. Introduction to Dislocations. Amsterdam: Elsevier, 2011. P. 272.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (829KB)
5.

下载 (322KB)
6.

下载 (1MB)
7.

下载 (2MB)
8.

下载 (2MB)
9.

下载 (773KB)
10.

下载 (126KB)
11.

下载 (136KB)

版权所有 © С.Г. Аникеев, Н.В. Артюхова, М.И. Кафтаранова, В.Н. Ходоренко, А.С. Гарин, Е.С. Марченко, 2023

##common.cookie##