Mobile Impulse Electromagnetic Soundings. Assessment of the Possibilities of Using UAVs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On the example of transient electromagnetic sounding (TEM) of moraine deposits the efficiency of the TEM-FAST technology is demonstrated. This technology uses a compact 25 m × 12.5 mcombined transmitterreceiver antenna for measuring transient responses in the microsecond range. The research depth with specific resistance of sandy-clayey deposits of 30–300 Ohm·mis notless than 50 mwith a “dead” zone thickness of not more than 6 m. For mobile pedestrian sounding, an antenna fixed on 4 flexible poles at a height of 2.5 mabove the earth′ssurface was used. The measuring system, with a total mass of 2.5 kg, was transported along the profiles by a team of 4 people at a speed of ~1 m/s. Every 20 seconds after processing 13,000 pulses, the system in the “autopilot” mode recorded the measurement results and coordinates. The repetition rate of current pulses with an amplitude of I = 3.3Аwasf = 3.2 kHz, the measured range of transient response timest = 4 — 64 μs. Vibration noises arising during movement due to deformations of the antenna contour in the Earth′smagnetic field reduced the sounding depth to 50–60 m. Based on the area sounding data, 3D geoelectric model of the territory was constructed, which was used to assess the capabilities of the TEM-FAST system in flight mode. Transient responses were synthesized, corresponding to different antenna heights above the surface of the studied environment. Despite the decrease in response amplitudes when raising the antennas to a 30 mheight, the sounding depth remained within 50 m. Based on mass-produced light UAVs (unmanned aerial vehicles) equipped with real-time dynamic positioning systems, it is proposed to tow the TEM system with a convoy of devices flying or hovering above the earth′ssurface in autopilot mode. When positioning antenna angles with decimeter accuracy, the noise threshold of transient response measurements will not exceed the levels obtained during mobile pedestrian sounding, and the research depth will not fall below 50 m.

About the authors

P. O. Barsukov

Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: pbadger@yandex.ru
Moscow, Troitsk, Russia

E. B. Fainberg

Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: edfain@yandex.ru
Moscow, Troitsk, Russia

E. O. Khabensky

Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: khabenskiy@yandex.ru
Moscow, Troitsk, Russia

T. A. Vasileva

Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: vasstank@yandex.ru
Moscow, Troitsk, Russia

References

  1. Геология СССр. 1974. Т. 4, ч. 2. / Гроховский Л.М., Леоненко И.Н., Сидоренко А.В. (ред.). М.: Недра. 200 с.
  2. Anschütz H., Christensen C., Pfaffhuber A. Quantitative Depth to Bedrock Extraction from AEM Data. Conference Proceedings. Near Surface Geoscience 2014 — 20th European Meeting of Environmental and Engineering Geophysics. 2014. P. 1–5. DOI: https://doi.org/10.3997/2214-4609.20141994
  3. Barsukov P.O., Fainberg E.B., Khabensky E.O. Shallow investigations by TEM-FAST technique: Methodology and examples. Electromagnetic Sounding of the Earth′s Interior. Theory, Modelling, Practice / Spichak V.V. (ed.). Amsterdam: Elsevier. 2015. 2nd ed. P. 47–78.
  4. Barsukov P.O., Fainberg E.B. On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration // Izvestiya Physics of the Solid Earth. 2018. V. 54(2). P. 349–358. doi: 10.1134/S1069351318020039
  5. Barsukov P.O., Fainberg E.B. Mapping bedrock topography and moraine deposits by transient electromagnetic sounding: Oslo graben, Norway // Near Surface Geophysics. 2019. V. 18. No 2. P. 123–133. https://doi.org/10.1002/nsg.12070
  6. Christensen C.W., Pfaffhuber A.A., Anschütz H., Smaavik T.F. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking // Journal of Applied Geophysics. 2015. V. 119. P. 178–191.
  7. Foged N., Auken E., Christiansen A.V., Sorensen K.I. Test-site calibration and validation of airborne and ground-based TEM systems // Geophysics. 2013. V. 78. No 2. P. E95–E106. 10.1190/GEO2012-0244.1
  8. Kamenetsky F.M., Stettler E.H., Trigubovich G.M. Transient geo-electromagnetics. Munich: Vela. 2010. P. 304.
  9. Pfaffhuber A., Bazin S., Domaas U. Correlating ERT with AEM in a rock slide mapping project, same shape but different quantities // ASEG Extended Abstracts. 2013(1):1. doi: 10.1071/ASEG2013ab178

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).