Simultaneous Observations of Gamma Background of Soil Radionuclides and Electrical Conductivity of the Surface Atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of simultaneous ground-based observations of gamma-ray spectra from soil radionuclides, volumetric radon activity, and electrical conductivity of the air in the surface atmosphere. Based on the analysis of gamma-ray spectra, the concentrations of 238 U, 232 Thand 40 Kin the upper soil layer and the terrestrial gamma-ray dose rate were estimated for 43 sites at 8 observation points, the distance between which ranges from 1 mto 25 km. The range of recorded concentrations was 1.28-2.64 mg/kgfor 40 K, 0.7-1.41 mg/kgfor 238 U, and 4.4-8.88 mg/kgfor 232 Th. The average ratios between the volumetric activities of the specified soil radionuclides and statistics of deviations from the averages were determined. During the observation period, the range of gamma-ray dose rate variation from soil radionuclides at a height of 1 mabove the earth′ssurface was 26-52 nGy/h. During the rain, an increase in the number of gamma-quanta in the 214 Bipeaks is recorded, reaching 1200% for the quanta energy near 1765 keV and 300% for the quanta energy near 2204 keV. The autocorrelation function of the time series of gamma-ray dose rate from soil radionuclides in good weather conditions decreases with a characteristic time scale of several days, which decreases to several hours in the presence of precipitation in the analyzed time interval, accompanied by an increase in the 214 Bilines in the gamma-ray spectrum. The electrical conductivity of the air of the surface atmosphere shows the presence of a diurnal variation with a minimum in the daytime and two maxima — in the morning and evening. Observations distributed by height showed that the electrical conductivity at a height of 0.5 mis on average greater than at a height of 1.5 m, while in the daytime the difference in conductivity values at these heights is expressed more clearly.

About the authors

S. V. Anisimov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

S. V. Galichenko

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

E. V. Klimanova

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

K. V. Afinogenov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

A. S. Kozmina

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

A. A. Prokhorchuk

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: svga@borok.yar.ru
Borok, Russia

References

  1. Анисимов С.В., Галиченко С.В., Афиногенов К.В., Макрушин А.П., Шихова Н.М. Объемная активность радона и ионообразование в невозмущенной нижней атмосфере: наземные наблюдения и численное моделирование // Физика Земли. 2017. № 1. с. 155–170.
  2. Анисимов С.В., Галиченко С.В., Афиногенов К.В., Прохорчук А.А. Глобальные и региональные составляющие электричества невозмущенной нижней атмосферы средних широт // Физика Земли. 2018. № 5. с. 104–114.
  3. Анисимов С.В., Галиченко С.В., Климанова Е.В., Прохорчук А.А., Афиногенов К.В. Вклад фотонной компоненты в ионизацию атмосферы радионуклидами земной коры и радиоактивными эманациями // Физика Земли. 2023. № 6. с. 245–258.
  4. Анисимов С.В., Афиногенов К.В., Галиченко С.В., Прохорчук А.А. Датчик концентрации легких атмосферных ионов для полевых натурных геофизических наблюдений // Сейсмические приборы. 2022. Т. 58. № 3. с. 43–60.
  5. Бреслер С.Е. Радиоактивные элементы. м.: ГИТТЛ. 1957. 550 с.
  6. Портнов А.М. Радиогеохимический поиск руды // Природа. 1984. № 5. с. 99–105.
  7. Смыслов А.А. Уран и торий в земной коре. Л.: Недра. 1974. 231 с.
  8. Сыромятников Н.Г., Иванова Э.И., Трофимова Л.А. Радиоактивные элементы как геохимические индикаторы породо- и рудообразования. м. 1976. 232 с.
  9. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. Томск: ТПУ. 1997. 383 с.
  10. Таблицы физических величин. справочник / И.К. Кикоин (ред.). м.: Атомиздат. 1976. 1008 с.
  11. Яковлев Г.А., Кобзев А.А., Смирнов С.В., Беляева И.В., Аршинов М.Ю., Яковлева В.С. Синхронный мониторинг g, b-фона и атмосферных осадков в геофизических обсерваториях ИмКЭс сО РАН и БЭК ИОА сО РАН // Вестник КРАУНЦ. Физ.-мат. науки 2020. Т. 32. № 3. с. 165–179.
  12. Aladeniyi K., Olowookere C., Oladele B.B. Measurement of natural radioactivity and radiological hazard evaluation in the soil samples collected from Owo, Ondo State, Nigeria // J. Radiat. Res. Appl. Sci. 2019. V. 12. № 1. P. 200–209.
  13. Alekseenko V., Alekseenko A. The abundances of chemical elements in urban soils // J. Geochem. Explor. 2014. V. 147. P. 245–249.
  14. Amestoy J., Meslin P.-Y., Richon P., Delpuech A., Derrien S., Raynal H., Pique É., Baratoux D., Chotard P., Van Beek P., Souhaut M., Zambardi T. Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry // J. Envir. Rad. 2021. V. 237. 106695.
  15. Anisimov S.V., Galichenko S.V., Aphinogenov K.V., Prokhorchuk A.A. Evaluation of the atmospheric boundary-layer electrical variability // Boundary-Layer Meteorol. 2018. V. 167. P. 327–348.
  16. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V., Kozmina A.S. Turbulent electric current in the marine convective atmospheric boundary layer // Atmos. Res. 2019. V. 228. P. 327–348.
  17. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V. Mid-latitude convective boundary-layer electricity: a study by large-eddy simulation // Atmos. Res. 2020. V. 244. 105035.
  18. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V. Mid-latitude convective boundary-layer electricity: A study by using a tethered balloon platform // Atmos. Res. 2021. V. 250. 105355.
  19. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Aphinogenov K.V. On the ratio of the components of the atmospheric vertical electric current density in fair weather // IOP Conf. Series: Earth and Envir. Sci. 2022. V. 1040. 012026.
  20. Anisimov S.V., Galichenko S.V., Prokhorchuk A.A., Klimanova E.V., Kozmina A.S., Aphinogenov K.V. Estimation of autocorrelation functions of atmospheric electric field variations using a Golomb array of sensors // Atmos. Res. 2025. V. 315. 107847.
  21. Barbosa S.M., Huisman J.A., Azevedo E.B. Meteorological and soil surface effects in gamma radiation time series — Implications for assessment of earthquake precursors // J. Envir. Rad. 2018. V. 195. P. 72–78.
  22. Barbosa S.M., Miranda P., Azevedo E.B. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores) // J. Envir. Rad. 2017. V. 172. P. 218–231.
  23. Bossew P., Cinelli G., Hernández-Ceballos M., Cernohlawek N., Gruber V., Dehandschutter B., Menneson F., Bleher M., Stöhlker U., Hellmann I., Weiler F., Tollefsen T., Tognoli P.V., de Cort M. Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate // J. Envir. Rad. 2017. V. 166. P. 296–308.
  24. Bottardi C., Albéri M., Baldoncini M., Chiarelli E., Montuschi M., Raptis K.G.C., Serafini A., Strati V., Mantovani F. Rain rate and radon daughters' activity // Atmos. Envir. 2020. V. 238. 117728.
  25. Burnett J.L., Croudace I.W., Warwick P.E. Short-lived variations in the background gamma-radiation dose // J. Radiol. Prot. 2010. V. 30. P. 525–533.
  26. Cinelli G., Tondeur F., Dehandschutter B., Bossew P., Tollefsen T., De Cort M. Mapping uranium concentration in soil: Belgian experience towards a European map // J. Envir. Radioactivity 2017. V. 166. P. 220–234.
  27. Fujinami N. Observational study of the scavenging of radon daughters by precipitation from the atmosphere // Envir. International. 1996. V. 22. P. S181–S185.
  28. Gasser E., Nachab A., Nourreddine A., Roy Ch., Sellam A. Update of 40K and 226Ra and 232Th series g-to-dose conversion factors for soil // J. Envir. Radioactivity 2014. V. 138. P. 68–71.
  29. Grasty R.L. Radon emanation and soil moisture effects on airborne gamma-ray measurements // Geophys. 1997. V. 62. № 5. P. 1379–1385.
  30. Greenfield M.B., Domondon A.T., Okamoto N., Watanabe I. Variation in g-ray count rates as a monitor of precipitation rates, radon concentrations, and tectonic activity // J. Appl. Phys. 2002. V. 91. № 3. P. 1628–1633.
  31. Gross W.H. Radioactivity as a guide to ore // Economic Geology. 1952. V. 47. № 7. P. 722–742.
  32. Guedalia D., Allet C., Fontan J., Druilhet A. Lead-212, radon and vertical mixing in the lower atmosphere (100-2000) m. Tellus. 1973. V. 25(4). P. 381–385.
  33. Huang T.-Y., Teng F.-Z., Rudnick R.L., Chen X.-Y., Hu Y., Liu Y.-S., Wu F.-Y. Heterogeneous potassium isotopic composition of the upper continental crust // Geochimica et Cosmochimica Acta 2020. V. 278. P. 122–136.
  34. Ielsch G., Thiéblemont D., Labed V., Richon P., Tymen G., Ferry C., Robé M.C., Baubron J.C., Béchennec F. Radon (222Rn) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates // J. Envir. Radioactivity 2001. V. 53. P. 75–90.
  35. Ielsch G., Cuney M., Buscail F., Rossi F., Leon A., Cushing M.E. Estimation and mapping of uranium content of geological units in France // J. Envir. Radioactivity 2017. V. 166. P. 210–219.
  36. Inomata Y., Chiba M., Igarashi Y., Aoyama V., Hirose K. Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan // Atmos. Envir. 2007. V. 41. P. 8043–8057.
  37. Lebedyte M., Butkus D., Morkūnas G. Variations of the ambient dose equivalent rate in the ground level air // J. Envir. Radioactivity 2003. V. 64. P. 45–57.
  38. Marsac K.E., Burnley P.C., Adcock C.T., Haber D.A., Malchow R.L., Hausrath E.M. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona // J. Envir. Radioactivity 2016. V. 165. P. 68–85.
  39. Melintescu A., Chambers S.D., Crawford J., Williams A.G., Zorila B., Galeriu D. Radon-222 related influence on ambient gamma dose // J. Environ. Radioact. 2018. V. 189. P. 67–78.
  40. Mercier J.-F., Tracy B.L., d'Amours R., Chagnon R., Hoffman I., Korpach E.P., Johnson S., Ungar R.K. Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass // J. Environ. Radioact. 2009. V. 100. P. 527–533.
  41. Nowak K.J., Solecki A.T. Factors affecting background gamma radiation in an urban space // J. Elem. 2015. V. 20(3). P. 653–665.
  42. Porstendörfer J. Properties and behavior of radon and thoron and their decay products in the air // J. Aerosol. Sci. 1994. V. 25. № 2. P. 219–263.
  43. Rizzo A., Antonacci G., Borra E., Cardellini F., Ciciani L., Sperandio L., Vilardi I. Environmental gamma dose rate monitoring and radon correlations: evidence and potential applications // Environments 2022. V. 9. P. 66.
  44. Rudnick R.L., Gao S. Composition of the continental crust // Treatise on Geochemistry 2003. V. 3. P. 1–64.
  45. Szegvary T., Leuenberger M.C., Conen F. Predicting terrestrial 222Rn flux using gamma dose rate as a proxy // Atmos. Chem. Phys. 2007. V. 7. P. 2789–2795.
  46. Taylor S.R. Abundance of chemical elements in the continental crust: a new table // Geochimica et Cosmochimica Acta 1964. V. 28. P. 1273–1285.
  47. Taylor S.R., McLennan S.M. The continental crust: its composition and evolution. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific. 1985. xvi+312p.
  48. Tchorz-Trzeciakiewicz D.E., Rysiukiewicz M. Ambient gamma dose rate as an indicator of geogenic radon potential // Sci. Total Envir. 2021. V. 755. 142771.
  49. Tchorz-Trzeciakiewicz D.E., Solecki A.T. Variations of radon concentration in the atmosphere. Gamma dose rate // Atmos. Envir. 2018. V. 174. P. 54–65.
  50. UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. Annex B: Exposures from Natural Radiation Sources. 2000.
  51. Voltaggio M. Radon progeny in hydrometeors at the earth's surface // Radiat. Protect. Dosim. 2012. V. 150. P. 334–341.
  52. Wedepohl K.H. The composition of the continental crust // Geochimica et Cosmochimica Acta 1995. V. 59. № 7. P. 1217–1232.
  53. Yakovleva V., Poberezhnikov A.D., Yakovlev G.A., Kobzev A.A., Smirnov S.V., Arshinov M.Yu. Analysis of gamma-radiation background changes during periods of atmospheric precipitation // Atomic Energy 2021. V. 131. № 1. P. 50–55.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).