Comparative Analysis of the Magnetic Field Archeointensity Recorded in the Brick Fragments From a Roman Kiln (Dragovishtitsa Village, Western Bulgaria)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper is devoted to the study of the features of thermoremanent magnetization (TRM) acquisition in brick fragments from a Roman kiln, uncovered by archaeological excavations in the vicinity of the village of Dragovishtitsa (Western Bulgaria), in experiments using the Thellier method as modified by Coe. The aim was to determine the magnitude of the geomagnetic field in ~300 AD. Initially, petromagnetic and archeomagnetic studies were carried out in the Paleomagnetic Laboratory of the National Institute of Geophysics, Geodesy and Geography of the Bulgarian Academy of Sciences. Then, experiments using the Thellier-Coe procedure at two cooling rates of samples taking into account the TRM anisotropy were carried out in the Laboratory of the Main Geomagnetic Field and Petromagnetism of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. Based on 18 archaeointensity determinations, the average weighted value of the magnetic field Bav= 56.5±0.8 μTwas obtained, corresponding to the archaeological age of 260±20 CE. The dating of 281-342 CEobtained by the archaeomagnetic method is consistent with the archaeological estimate of the kiln operation time. The calculated value of archaeointensity is in satisfactory agreement with the reference values of the magnetic field for Bulgaria and confirms its decrease in the time interval of ~200-300 CE.

About the authors

O. V. Pilipenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: pilipenko@ifz.ru
Moscow, 123242 Russia

M. Kostadinova-Avramova

National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences

Email: miki4740@abv.bg
Sofia, 1113 Bulgaria

References

  1. Ольшаков А.С., Щербакова В.В. Термомагнитный критерий определения доменной структуры ферромагнетиков // Изв. АН СССР. Сер. Физика Земли. 1979. № 2. С. 38-47.
  2. Бураков К.С. Определение древнего геомагнитного поля на магнитоанизотропных образцах // Изв. АН СССР. Сер. Физика Земли. 1981. № 11. С. 116–120.
  3. Веселовский Р.В., Дубиня Н.В., Пономарев А.В. и др. Центр коллективного пользования Института физики Земли им. О.Ю. Шмидта РАН "Петрофизика, геомеханика и палеомагнетизм" // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0579. https://doi.org/10.5800/GT-2022-13-2-0579
  4. Пилипенко О.В., Марков Г.П., Сальная Н.В., Минаев П.А., Афиногенова Н.А. Что отражено в археомагнитной записи обожженной керамики? // Физика Земли. 2024. № 3. С. 3–24.
  5. Сальная Н.В. Эволюция напряженности магнитного поля на территории Европейской части России во втором тысячелетии нашей эры. Дисс. канд. физ.-мат. наук. Санкт-Петербург. 2022. 210 с.
  6. Костадинова-Аврамова М. Предимства и недостатъци на тухлите като материал за археомагнитно изследване // Интердисциплинарни изследвания. 2019. Т. XXVI. С. 107–120 (на болгарском языке с аннотацией на английском).
  7. Костадинова–Аврамова М., Ковачева М. Изследване магнетизма на археологически структури. Практически указания при работа на терен // Българско е-Списание за Археология. 2015. Т. 5. С. 163-175 (на болгарском языке с аннотацией на английском).
  8. Христов М., Танева С. Спасителни археологически проучвания на обект № 4 по трасето на междусистемна газова връзка България–Сърбия през 2015 г., км 13+690 — 13+830, в землището на с. Драговищица, община Костинброд – Villa rustica и обект от бронзовата епоха // Археологически открития и разкопки през 2015 г. София. 2016. С. 539 — 542 (на болгарском языке с аннотацией на английском).
  9. Biggin A.J., Badejo S., Hodgson E., Muxworthy A.R., Shaw J., Dekkers M.J. The effect of cooling rate on the intensity of thermoremanent magnetization (TRM) acquired by assemblages of pseudo-single domain, multidomain and interacting single-domain grains // Geophys. J. Int. 2013. V. 193. P. 1239–1249.
  10. Coe R.S. Paleointensities of the Earth’s magnetic field determined from tertiary and quaternary rocks // J. Geophys. Res. 1967. V. 72. P. 3247–3262.
  11. Coe R.S., Gromme S., Mankinen E.A. Geomagnetic paleointensity from radiocarbon-dated flows on Hawaii and the question of the Pacific nondipole low // J. Geophys. Res. 1978. V. 83. P. 1740–1756.
  12. Flinn D. On folding during three-dimensional progressive deformation // Quarterly Journal of the Geological Society. 1962. V. 118. P. 385–428.
  13. Fox J.M.W., Aitken M.J. Cooling-rate dependence of thermoremanent magnetization // Nature. 1980. V. 283. P. 462–463.
  14. Kissel C., Laj C. Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores // Phys. Earth Planet. Inter. 2004. V. 147. P. 155–169.
  15. Kostadinova-Avramova M. Advantages and disadvantages of bricks as a material for archaeomagnetic study // Интердисциплинарни изследвания. 2019. V. XXVI. P. 107–120.
  16. Kosterov A., Kovacheva M., Kostadinova-Avramova M., Minaev P., Salnaia N., Surovitskii L., Yanson S., Sergienko E., Kharitonskii P. High-coercivity magnetic minerals in archaeological baked clay and bricks // Geophys. J Int. 2021. V. 224. P. 1256–1271.
  17. Kovacheva M., Kostadinova-Avramova M., Jordanova N., Lanos Ph., Boyadzhiev Y. Extended and revised Archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia // Phys. Earth Planet. Inter. 2014. V. 23. P. 79–94.
  18. Lanos Ph. Bayesian inference of calibration curves, application to archaeomagnetism / Buck C.E., Millard A.R. (eds.). Tools for Constructing Chronologies, Crossing Disciplinary Boundaries // Lecture Notes in Statistics. London: Springer-Verlag. 2004. V. 177. P. 43–82.
  19. López-Sánchez J., McIntosh G., Osete M. L., del Campo A., Villalaín J. J., Pérez L., Kovacheva M., Rodríguez de la Fuente O. Epsilon iron oxide: Origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials // Geochemistry, Geophysics, Geosystems. 2017. V. 18(7). P. 2646–2656.
  20. López-Sánchez J., Palencia O. A. Campo A. del et al. Further progress in the study of epsilon iron oxide in archaeological baked clays // Phys. Earth Planet. Inter. 2020. V. 307 P. 106554.
  21. Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties // Geophys. Res. Lett. 1990. V. 17. P. 159–162.
  22. Nagata T., Arai Y., Momose K. Secular variation of the geomagnetic total force during the last 5000 years // J. Geophys. Res. 1963. V. 68. P. 5277–5281.
  23. Paterson G.A., Tauxe L., Biggin A.J., Shaar R., Jonestrask L.C. On improving the selection of Thellier-type paleointensity data // Geochem. Geophys. Geosyst. 2014. V. 15. P. 1180–1192.
  24. Prévot M., Mankinen E.A., Coe R.S., Gromme S.C. The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models // J. Geophys. Res. 1985. V. 90. P. 10417–10448.
  25. Riisager P., Riisager J. Detecting multidomain magnetic grains in Thellier palaeointensity experiments // Phys. Earth Planet. 2001. V. 125. P. 111–117.
  26. Selkin P.A., Tauxe L. Long-term variations in palaeointensity // Philos. Trans. R. Soc. London, Ser A. 2000. V. 358. P. 1065–1088.
  27. Surovitskii L., Kosterov A., Kovacheva M., Kostadinova-Avramova M., Salnaya N., Smirnov A. High-temperature three-axis IRM Lowrie test, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1782, https://doi.org/10.5194/egusphere-egu21-1782
  28. Tauxe L., Mullender T. A. T., Pick T. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis // J. Geophys. Res. 1996. V. 101. P. 571–583.
  29. Thellier E., Thellier O. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique // Ann. Géophys. 1959. V. 15. P. 285–378.
  30. Tronc E., Chaneac C., Jolivet J.P. Structural and magnetic characterization of ε-Fe2O3 // J. Solid State Chem. 1998. V. 139. P. 93–104.
  31. Walton D., Williams W. Cooling rate effects in the magnetization of single-domain grains // J. Geomag. Geoelectr. 1988. V. 40. P. 729–737.
  32. Yu Y. Importance of cooling rate dependence of thermoremanence in paleointensity determination // J. Geophys. Res. Solid Earth. 2011. V. 116. B09101. doi: 10.1029/2011JB8388.
  33. Zijderveld J.D.A. Demagnetization of rocks: analysis of results // Methods in Paleomagnetism. Amsterdam: Elsevier. 1967. P. 254–286.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).