On the Pseudo-Thellier Method for Single-Domain Non-Interacting Particles. Theory and Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pseudo-Thellier method was numerically simulated based on a rigorous solution of kinetic equations for uniaxial, chaotically oriented, non-interacting single-domain particles. Laboratory experiments were performed to determine the relative paleointensity Bдр with thermoremanent magnetization (TRM) created on samples of igneous rocks in random fields Bсл. The domain structure of grains of these samples varies from single- to multi-domain. Both theoretical and experimental pseudo-Arai diagrams can be divided into two quasi-rectilinear sections, one of which is located in a relatively low-coercivity region Bc < 40–50 mT, and the second — at higher amplitudes of the alternating field (AF). Determinations of the relative paleointensity Bдр on igneous rocks bearing TRM, performed on low-coercivity segments of pseudo-Arai diagrams, give quite satisfactory results with a linear correlation coefficient R = 0.8 between the true field Bсл and Bдр, determined using the pseudo-Thellier method. It is shown that when taking into account thermal fluctuations for relatively magnetically soft and small particles (which corresponds to low blocking temperatures), there is a significant difference between the coercive force of a particle Bp and the actual field of its magnetization (demagnetization). The main conclusion of the work is that the application of the pseudo-Thellier method to igneous rocks is a promising direction, and its development in both methodological and practical aspects can bring interesting results, especially when applied to samples that are unstable to magnetomineralogical changes in the process of applying the classical Thellier method.

About the authors

V. P Scherbakov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: shcherbakovv@list.ru
Borok, Yaroslavl Region, Russia

N. K Sycheva

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Borok, Yaroslavl Region, Russia

N. A Afinogenova

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Borok, Yaroslavl Region, Russia

M. A Smirnov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Borok, Yaroslavl Region, Russia

G. V Zhidkov

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Borok, Yaroslavl Region, Russia

References

  1. Афремов Л.Л., Харитонский П.В. О магнитостатическом взаимодействии в ансамбле растущих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. № 2. 1988. С. 101–105.
  2. Белоконь В.И., Нефедев К.В. Функция распределения случайных полей взаимодействия в неупорядоченных магнетиках. Спиновое и макроспиновое стекло // Журнал экспериментальной и теоретической физики. 2001. Т. 120. Вып. 1(7). С. 156–164.
  3. Большаков А.С., Щербакова В.В. Термомагнитный критерий определения доменной структуры ферромагнетиков // Изв. АН СССР. Сер. Физика Земли. 1979. № 2. С.38–47.
  4. Методы палеомагнитных исследований горных пород [Текст] / В.И. Белоконь, В.В. Кочегура, Л.Е. Шолпо; М-во геологии СССР. Весе003. науч.-исслед. геол. ин-т “ВСЕГЕИ”. Л.: Недра. Ленингр. отд-ние. 1973. 247 с.
  5. Кузина Д.М., Щербаков В.П., Сальная Н.В., Юсупова А.Р., Ли Х.Ч., Нураланев Д.К. Относительная палеонапряженность геомагнитного поля за последние 9000 лет по донным осадкам озера Шира, северная Хакасия, определенная по методу псевдо-Телье // Физика Земли. 2024. С. 161–168. doi: 10.31857/S0002333724040111
  6. Сычев А.Н., Смирнов М.А., Виноградов Ю.К. Трехкомпонентный программируемый термомагнитометр. Научно-практическая конференция “Научное приборостроение — современное состояние и перспективы развития”, Москва, 15–16 ноября 2016 г. Сборник материалов. М.: “Богородский печатник”. 2016. С. 200–202. ISBN 978-5-89589-102-5.
  7. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности однодоменных зерен // Физика Земли. 2023. № 5. С. 3–12. doi: 10.31857/S0002333723050095
  8. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности для хаотически ориентированных в пространстве одноосных однодоменных частиц // Физика Земли. 2024. № 6. С. 3–12.
  9. Щербаков В.П., Щербакова В.В. О магнитостатическом взаимодействии в системе однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1975. № 9. С. 101 – 104.
  10. Brown W.F. Thermal fluctuation of a single-domain particle // Phys. Rev. 1963. V. 130. P. 1677–1686.
  11. Dekkers M.J., Böhnel H.N. Reliable absolute palaeointensities independent of magnetic domain state // Earth Planet. Sci. Lett. 2006. V. 248. P. 507–516.
  12. de Groot L.V., Biggin A.J., Dekkers M.J., Langereis C.G., Herrero-Bervera E. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record // Nat. Commun. 2013. №4. doi: 10.1038/ncomms3727
  13. Dunlop D., Ozdemir O. Rock magnetism. Fundamentals and frontiers. Cambridge University Press. 1997. 573 p.
  14. Egli R. Theoretical considerations on the anhysteretic remanent magnetization of interacting particles with uniaxial anisotropy // J. Geophys. Res. 2006. V. 111. B12S18, doi: 10.1029/2006JB004577
  15. Le Mouël J.L., P. Shebalin, A. Khokhlov Earth magnetic field modeling from Oersted and Champ data // Earth Planet. Space. 2010. V. 62. P. 1–10.
  16. Kruiver P., Kok Y., Dekkers M., Langeris C., Laj C. A pseudo-Thellier relative paleointensity record, and rock magnetic and geochemical parameters in relation to climate during the last 276 kyr in the Azores region // Geophysical Journal International. 1999. V. 136. P. 757–770. https://doi.org/10.1046/j.1365-246x.1999.00777.x
  17. Néel L. Some theoretical aspects of rock-magnetism // Advances in Physics. 1955. № 4(14). P. 191–243. https://doi.org/10.1080/00018735500101204
  18. Paterson Greig A., Heslop David and Yongxin Pan The pseudo-Thellier paleointensity method: new calibration and uncertainty estimates // Geophys. J. Int. 2016. V. 207. P. 1596–1608. doi: 10.1093/gji/ggw349
  19. Shcherbakov V.P., Lhuillier F., Sycheva N.K. Exact Analytical Solutions for Kinetic Equations Describing Thermochemical Remanence Acquisition for Single-Domain Grains: Implications for Absolute Paleointensity Determinations // JGR Solid Earth. 2021. V. 126. Is. 5. P. 1–24. doi: 10.1029/2020JB021536
  20. Shcherbakova V.V., Shcherbakov V.P., Heider F. Properties of partial thermoremanent magnetization in PSD and MD magnetic grains // J.Geophys. Res. 2000. V.105. № B1. P. 767–782.
  21. Smirnov M., Sychev A., Sahnala N., Minaev P., Powerman V., Veselovskiy R. “ORION” – the versatile Full-vector Sample Magnetometer for Paleointensity, Rock Magnetic and Paleomagnetic Studies // Geophysical Research Abstracts. 2019. V. 21. EGU2019-5608. EGU General Assembly 2019.
  22. Tauxe L., Pick T., Kok Y. S. Relative paleointensity in sediments: A pseudo-Thellier approach // Geophys. Res. Lett. 1995. V. 22. P. 2885– 2888.
  23. Veselovskiy R.V., Samsonov A.V., Stepanova A.V., Salnikova E.B., Larionova Y.O., Travin A.V., Arzamastsev A.A., Egorova S.V., Erofeeva K.G., Stifceva M.V., Shcherbakova V.V., Shcherbakov V.P., Zhidkov G.V., Zakharov V.S. I.86 Ga key paleomagnetic pole from the Murmansk craton intrusions – Eastern Murman Sill Province, NE Fennoscandia: Multidisciplinary approach and paleotectonic applications // Precamb. Res. 2019. V. 324. P. 126–145. doi.org/10.1016/j.precamres.2019.01.017

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).