Reconstruction of Parameters of Shear Stresses During the Formation of Multi-Rank Faults in the Western Baikal Region Based on Tectonophysical Interpretation of Lineaments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The author's software made it possible to perform a detailed identification of lineaments at various scale levels for the region of the Obruchev fault system of the western Baikal region. The identified lineaments significantly complement the mapped framework of faults and are consistent with the strike of fault structures of the corresponding rank. Based on the analysis of the relative specific density of lineaments of the local scale level, reflecting the feathering megacracks of large faults, heterogeneous zones of dynamic influence of regional structures were established, which were divided into relatively homogeneous segments. For each identified segment and each structure as a whole, using the developed software “Lineament Stress Calculator”, a reconstruction of shear stress parameters was carried out using the P.L. Hancock's model. It has been previously proven that the main features of the Early Paleozoic stage of the region development during the accretion of the Olkhon terrane to the southern margin of the Siberian craton were accompanied by activation of rightlateral strike-slip displacements along the SW-NE accretionary sutures and active metamorphism processes. The obtained results confirm that the main faults of the SW-NE strike, subparallel to the marginal suture of the Siberian platform, were formed at the early stage of their development as right-lateral strike-slips with the compression axis orientation of ~90°. Second-order faults of the NW-SE orientation are defined as left-lateral strike-slips and were probably formed at that time as antithetical shears in relation to the main structures, having received their development during further structural rearrangements of the region.

About the authors

A. D. Svecherevskiy

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: alexey@svecherevskiy.ru
Moscow, Russia

S. A. Ustinov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences; Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

D. S. Lapaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Moscow, Russia

V. A. Petrov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Александров В.К. Надвиговые и шарьяжные структуры Прибайкалья. Новосибирск: Наука. 1990. 103 с.
  2. Аржанникова А.В., Гофман Л.Е. Проявление неотектоники в зоне влияния Приморского разлома // Геология и геофизика. 2000. Т. 41. № 6. С. 811-818.
  3. Борняков С.А., Семинский К.Ж., Буддо В.Ю., Мирошниченко А.И., Черемных А.В., Черемных А.С., Тарасова А.А. Основные закономерности разломообразования в литосфере и их прикладные следствия (по результатам физического моделирования) // Геодинамика и тектонофизика. 2014. № 5(4). С. 823-861.
  4. Гзовский М.В. Основы тектонофизики. М.: Наука. 1975. 536 с.
  5. Гладкочуб Д.П., Донская Т.В., Федоровский В.С., Мазукабзов А.М., Ларионов А.Н., Сергеев., С.А. Ольхонский метаморфический террейн Прибайкалья: раннепалеозойский композит фрагментов неопротерозойской активной окраины // Геология и геофизика. 2010. Т. 51. № 5. С. 571-588.
  6. Гладкочуб Д.П., Донская Т.В., Федоровский В.С., Мазукабзов А.М., Скляров Е.В., Лавренчук А.В., Лепехина Е.Н. Фрагмент раннепалеозойской (500 млн лет) островной дуги в структуре Ольхонского террейна (Центрально-Азиатский складчатый пояс) // Докл. РАН. 2014. Т. 457. № 4. С. 429-433.
  7. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Ангаро-Енисейская. Лист N-48 - Иркутск. Объяснительная записка / Под ред. Е.П. Миронюка. СПб.: Карт-фабрика ВСЕГЕИ. 2009. 574 с.
  8. Донская Т.В., Гладкочуб Д.П., Федоровский В.С., Мазукабзов А.М., Чо М., Чонг В., Ким Д. Синметаморфические гранитоиды (~ 490 млн лет) - индикаторы аккреционной стадии в эволюции Ольхонского террейна (Западное Прибайкалье) // Геология и геофизика. 2013. Т. 54. № 10. С. 1543-1561.
  9. Зорин Ю.А., Скляров Е.В., Беличенко В.Г., Мазукабзов А.М. Механизм развития системы островная дуга - задуговый бассейн и геодинамика Саяно-Байкальской складчатой области в позднем рифее - раннем палеозое // Геология и геофизика. 2009. № 3. С. 209-226.
  10. Иванченко Г.Н., Горбунова Э.М. Формализованный линеаментный анализ геологических структур Прибайкалья // Физика Земли. 2021. № 5. С. 223-234.
  11. Кац Я.Г., Полетаев А.И., Румянцева Э.Ф. Основы линеаментной тектоники. М.: Недра. 1986. 144 с.
  12. Корбутяк А.Н., Фролова Н.С., Мишакина А.А. Физическое моделирование структурообразования в осадочном чехле над разломом фундамента. Сопоставление с эшелонированными нефтегазоносными валообразными поднятиями севера Западно-Сибирской плиты // Каротажник. 2018. № 3 (285). С. 57-67.
  13. Кузьмин Ю.О. Современные аномальные деформации земной поверхности в зонах разломов: сдвиг или раздвиг? // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 967-987. Леви К.Г., Аржанникова А.В., Буддо В.Ю., Кириллов П.Г., Лухнев А.В., Мирошниченко А.И., Ружич В.В., Саньков В.А. Современная геодинамика Байкальского рифта // Разведка и охрана недр. 1997. № 1. С. 10-20.
  14. Лунина О.В., Гладков А.С., Неведрова Н.Н. Рифтовые впадины Прибайкалья: тектоническое строение и история развития. Новосибирск: Академическое изд-во “Гео”. 2009. 316 с.
  15. Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М., Алакшин А.М., Поспеев А.В., Шимараев М.Н., Хлыстов О.М. Кайнозой Байкальской рифтовой впадины: строение и геологическая история. Новосибирск: изд-во СО РАН филиал “Гео”. 2001. 252 с.
  16. Мельникова В.И., Радзиминович Н.А. Параметры сейсмотектонических деформаций земной коры Байкальской рифтовой зоны по сейсмологическим данным // Докл. РАН. 2007. Т. 416. № 4. С. 543-545.
  17. Мишарина Л.А., Солоненко Н.В. Механизм очагов и поле тектонических напряжений. Сейсмическое районирование Восточной Сибири и его геолого-геофизические основы. Наука. 1977. C. 71-78.
  18. Обухов С.П., Ружич В.В. Структура и положение Приморского сбросо-сдвига в системе главного разлома Западного Прибайкалья // Геология и полезные ископаемые Восточной Сибири. Иркутск: ИЗК СО РАН. 1971. С. 65-68.
  19. Парфеевец А.В., Саньков В.А., Мирошниченко А.И., Лухнев А.В. Эволюция напряженного состояния земной коры Монголо-Байкальского подвижного пояса // Тихоокеанская геология. 2002. Т. 21. № 1. С. 14-28.
  20. Петров В.А., Мострюков А.О., Васильев Н.Ю. Структура современного поля напряжений мезозойско-кайнозойского цикла деформации Байкальской рифтовой зоны // Геофизические исследования. 2008. Т. 9. № 3. С. 39-61.
  21. Петров В.А., Сим Л.А., Насимов Р.М., Щукин С.И. Разломная тектоника, неотектонические напряжения и скрытое урановое оруденение в районе Стрельцовской кальдеры // Геология рудных месторождений. 2010. Т. 52. № 4. С. 310-320.
  22. Плешанов С.П., Чернов Ю.А. О генетической связи кайнозойских разрывных нарушений западного Прибайкалья с разломами докембрийского заложения // Вопросы геологии Прибайкалья и Забайкалья. 1971. С. 51-54.
  23. Ребецкий Ю.Л., Сим Л.А., Маринин А.В. От зеркал скольжения к тектоническим напряжениям. Методики и алгоритмы. М.: ГЕОС. 2017. 235 с.
  24. Семинский К.Ж. Внутренняя структура континентальных разломных зон. Новосибирск: изд-во СО РАН. Филиал “Гео”. 2003. 244 с.
  25. Семинский К.Ж., Кожевников Н.О., Черемных А.В., Поспеева Е.В., Бобров А.А., Оленченко В.В., Тугарина М.А., Потапов В.В., Бурзунова Ю.П. Межблоковые зоны северозападного плеча Байкальского рифта: результаты комплексных геологогеофизических исследований по профилю п. Баяндай - м. Крестовский // Геология и геофизика. 2012. Т. 53. № 2. С. 250-269.
  26. Семинский К.Ж., Кожевников Н.О., Черемных А.В., Поспеева Е.В., Бобров А.А., Оленченко В.В., Тугарина М.А., Потапов В.В., Зарипов Р.М., Черемных А.С. Межблоковые зоны в земной коре юга Восточной Сибири: тектонофизическая интерпретация геологогеофизических данных // Геодинамика и тектонофизика. 2013. Т. 4. № 3. С. 203-278.
  27. Семинский К.Ж. Спецкартирование разломных зон земной коры. Статья 1. Теоретические основы и принципы // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 445-467.
  28. Скляров Е.В., Федоровский В.С., Котов А.Б., Лавренчук А.В., Мазукабзов А.М., Старикова А.Е. Инъекционные карбонатные и силикатно-карбонатные комплексы в коллизионных системах на примере Западного Прибайкалья // Геотектоника. 2013. № 3. С. 58-77.
  29. Федоровский В.С., Владимиров А.Г., Хаин Е.В. Тектоника и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. № 3. С. 3-22.
  30. Федоровский В.С. Купольный тектогенез в коллизионной системе каледонид Западного Прибайкалья // Геотектоника. 1997. № 6. С. 56-71.
  31. Фролова Н.С., Кара Т.В., Читалин А.Ф., Чернецкий А.Г. Аналоговое моделирование сложных сдвиговых зон. Пример Баимской рудной зоны (западная Чукотка). Проблемы тектоники континентов и океанов: Материалы LI-го Тектонического совещания. 2019. С. 320-324.
  32. Черемных А.В. Разломно-блоковое строение земной коры и напряженное состояние в зонах региональных разломов восточного побережья озера Байкал // Геология и геофизика. 2006. Т. 47. № 2. С. 250-258.
  33. Черемных А.В. Поля напряжений в зоне Приморского сброса (Байкальский рифт) // Литосфера. 2011. № 1. С. 135-142.
  34. Черемных А.В., Гладков А.С., Черемных А.С. Экспериментальное исследование формирования сети разрывов Накынского поля Якутской алмазоносной провинции // Известия Сибирского отделения Секции наук о Земле РАЕН. Геология, разведка и разработка месторождений полезных ископаемых. 2017. Т. 40. № 1. С. 66-82.
  35. Черемных А.В., Черемных А.С., Бобров А.А. Морфоструктурные и структурно-парагенетические особенности разломных зон Прибайкалья (на примере Бугульдейского дизъюнктивного узла) // Геология и геофизика. 2018. Т. 59. № 9. С. 1372-1383.
  36. Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука. СО АН СССР. 1983. 110 с.
  37. Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого-структурные методы их изучения. Новосибирск: Наука. 1989. 158 с.
  38. Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Гео. 2014. 359 с.
  39. Anders M.H., Wiltschko D.V. Microfracturing, paleostress and the growth of faults // J. Struct. Geol. 1994. V. 16. № 6. P. 795-815.
  40. Anderson E.M. The dynamics of faulting // Transactions of the Edinburgh Geological Society. 1905. № 8. P. 387-402.
  41. Arzhannikova A., Arzhannikov S.G. Morphotectonic and paleoseismological studies of Late Holocene deformation along the Primorsky Fault, Baikal Rift // Geomorphology. 2019. V. 342. P. 140-149.
  42. Brink U.S., Taylor M.H. Crustal structure of central Lake Baikal: insights into intracontinental rifting // J. Geophys. Res. 2002. V. 107. № B7. https://doi.org/10.1029/2001JB000300
  43. Cheremnykh A.V., Burzunova Yu.P., Dekabryov I.K. Hierarchic features of stress field in the Baikal region: Case study of the
  44. Buguldeika Fault Junction // Journal of Geodynamics. 2020. V. 141-142. Р. 101797.
  45. Delvaux D., Moeys R., Stapel G., Melnikov A., Ermikov V. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia. Part I: Palaeozoic and Mesozoic pre-rift evolution // Tectonophysics. 1995. V. 252. № 1. P. 61-101.
  46. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko А., Ruzhich V., San′kov V. Paleostress reconstruc-tion and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting // Tectonophysics. 1997. V. 282. № 1. P. 1-38.
  47. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J. Pre-collisional (0.5 Ga) complexes of the Olkhon terrane (southern Siberia) as an echo of events in the Central Asian Orogenic Belt // Gondwana Res. 2017. 42. P. 243-263. https://doi.org/10.1016/j.gr.2016.10.016
  48. Enoh M.A., Okeke F.I., Okeke U.C. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon seepage in Ugwueme, South-Eastern Nigeria // Geod. Cartogr. 2021. V. 47. P. 34-44.
  49. Faulkner D.R., Mitchell T.M., Jensen E., Cembrano J. Scaling of fault damage zones with displacement and the implications for fault growth processes // J. Geophys. Res. Solid Earth. 2011. V. 116. № 5. P. 1-11.
  50. Faulkner D.R., Sanchez-Roa C., Boulton C., den Hartog, S.A.M. Pore fluid pressure development in compacting fault gouge in theory, experiments, and nature // J. Geophys. Res.: Solid Earth. 2018. V. 123. № 1. P. 226-241.
  51. Gladkochub D.P., Donskaya T.V., Wingate M.T.D., Poller U., Kröner A., Fedorovsky V.S., Mazukabzov A.M., Todt W., Pisarevsky S.A. Petrology, geochronology, and tectonic implications of ca. 500 Ma metamorphic and igneous rocks along the northern margin of the Central-Asian Orogen (Olkhon terrane, Lake Baikal, Siberia) // J. Geol. Soc. Lond. 2008. V. 165. P. 235-246. https://doi.org/10.1144/0016-76492006-125
  52. Hancock P.L. Brittle microtectonics: principles and practice // J. of Struct. Geol. 1985. V. 7. № 3/4. P. 437-457.
  53. Hawker L., Uhe P., Paulo L., Sosa J., Savage J.T., Sampson C.C., Neal J.C. A 30 m global map of elevation with forests and buildings removed // Environmental Research Letters. 2022. V.17. № 2. P. 24016.
  54. Hobbs W.H. Lineaments of the Atlantic Border Region // Geological Society. American Bulletin. 1904. V. 15. P. 483- 506.
  55. Ivanchenko G.N., Gorbunova E.M., Cheremnykh A.V. Some Possibilities of Lineament Analysis in Mapping Faults of Different Ranks: Case Study of the Baikal Region // Izvestiya, Atmospheric and Ocean Physic. 2022. V. 58. № 9. Р. 1086-1099. https://doi.org/10.1134/S0001433822090092
  56. Jolivet M., De Boisgrollier T., Petit C., Fournier M., Sankov V.A., Ringenbach J.-C., Byzov L., Miroshnichenko A.I., Kovalenko S.N., Anisimova S.V. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology // Tectonics. 2009. V. 28. P. TC3008. https://doi.org/10.1029/2008TC002404
  57. Lunina O.V., Gladkov A.S., Cheremnykh A.V. Fracturing in the Primorsky fault zone (Baikal Rift system) // Russ. Geol. Geophys. 2002. V. 43. № 5. P. 446-455.
  58. Mats V.D., Lobatskaya R.M., Khlystov O.M. Evolution of faults in continental rifts: morphotectonic evidence from the south-western termination of the North Baikal basin // Earth Science Frontiers. 2007. V. 14. № 1. P. 207-219.
  59. Mats V.D., Perepelova T.I. A new perspective on evolution of the Baikal Rift // Geosci. Front. 2011. V. 2. № 3. P. 349-365. Petit C., Déverchère J. Structure and evolution of the Baikal rift: a synthesis // Geochemistry, Geophysics, Geosystems. 2006. V. 7. № 11. P. Q11016. https://doi.org/10.1029/2006GC001265
  60. San′kov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A., Melnikov A.I., Delvaux D. Cenozoic stress field evolution in the Baikal rift zone // Bulletin du Centre de Recherches Elf Exploration Production. 1997. V. 21. № 2. P. 435-455.
  61. Wilson J.E., Chester J.S., Chester F.M. Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California // J. Struct. Geol. 2003. №. 25. P. 1855-1873.
  62. Zlatopolsky A.A. Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis - experimental results // Computers & Geoscience. 1992. V. 18. № 9. Р. 1121-1126.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».