Seismotectonic Position of the Source of the July 13, 2023, Earthquake in the Eastern Laptev Sea Shelf from Surface Wave Data
- Authors: Filippova A.I.1,2, Fomochkina A.S.2,3
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
- Gubkin National University of Oil and Gas
- Issue: No 6 (2024)
- Pages: 127-137
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/282347
- DOI: https://doi.org/10.31857/S0002333724060089
- EDN: https://elibrary.ru/RGGSEQ
- ID: 282347
Cite item
Abstract
In this study, we consider in detail the July 13, 2023, earthquake occurred of the shelf of the eastern Laptev Sea (Belkov–Svyatoi Nos rift). On the one hand, our interest in this event is due to the location of its epicenter, to the east of which there is a sharp decrease in seismic activity. Conversely, detailed Common Depth Point (CDP) data on the structure o the upper crust are available for its epicentral zone, making it possible to analyze the seismotectonic position of the earthquake source. Focal parameters in the instantaneous point source approximation are calculated from surface waves recorded at teleseismic distances. As a result, we have obtained a scalar seismic moment (M0 = 9.8*1016 N · m), corresponding moment magnitude (Mw = 5.3), source depth (h = 8 км), and focal mechanism (a normal fault along a gently dipping nodal plane with a NW–SE strike). Our results are compared with data from seismological agencies. It has been shown that differences between them are most likely caused by various initial data, including their different frequency ranges. Our estimates agree better with the available geological and geophysical information on the tectonics of the study area. Taking into account the data on strike, dip, and penetration depth of faults and our source parameter values, we have concluded that the July 13, 2023, earthquake could have been associated with a major listric normal fault on the western slope of the Belkov–Svyatoi Nos rift.
Full Text

About the authors
A. I. Filippova
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
Author for correspondence.
Email: aleirk@mail.ru
Russian Federation, Moscow, Troitsk, 108840; Moscow, 117997
A. S. Fomochkina
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences; Gubkin National University of Oil and Gas
Email: aleirk@mail.ru
Russian Federation, Moscow, 117997; Moscow, 119991
References
- Аптекман Ж.Я., Татевосян Р.Э. О возможности выявления сложных очагов землетрясений по данным каталога СМТ (тензор центроида момента) // Физика Земли. 2007. № 5. С. 17–23.
- Букчин Б.Г. Об определении параметров очага землетрясения по записям поверхностных волн в случае неточного задания характеристик среды // Изв. АН СССР. Сер. Физика Земли. 1989. № 9. С. 34–41.
- Драчев С.С. Тектоника рифтовой системы дна моря Лаптевых // Геотектоника. 2000. № 6. С. 43–58.
- Имаева Л.П., Имаев В.С., Козьмин Б.М., Мельникова В.И., Середкина А.И., Маккей К.Д., Ашурков С.В., Смекалин О.П., Овсюченко А.Н., Чипизубов А.В., Сясько А.А. Сейсмотектоника северо-восточного сектора Российской Арктики. Новосибирск: изд-во СО РАН. 2017. 134 с.
- Левшин А.Л., Яновская Т.Б., Ландер А.В., Букчин Б.Г., Бармин М.П., Ратникова Л.И., Итс Е.Н. Поверхностные сейсмические волны в горизонтально-неоднородной Земле. М.: Наука. 1986. 278 с.
- Пискарев А.Л., Сорока И.В., Чернышев М.Ю. Строение земной коры и тектогенез в море Лаптевых // Геотектоника. 2003. № 5. С. 57–72.
- Середкина А.И., Гилева Н.А. Зависимость между моментной магнитудой и энергетическим классом для землетрясений Прибайкалья и Забайкалья // Сейсмические приборы. 2016. Т. 52. № 2. С. 29–38.
- Середкина А.И., Козьмин Б.М. Очаговые параметры Таймырского землетрясения 9 июня 1990 г. // Докл. РАН. 2017. Т. 473. № 2. С. 214–217. doi: 10.7868/S0869565217060202
- Федеральный исследовательский центр Единая геофизическая служба Российской академии наук, 2024. On-line каталог. Обнинск, Россия. Available from http://www.gsras.ru/new/catalog.Lastaccessed 15 February 2024.
- Филиппова А.И., Фомочкина А.С. Очаговые параметры сильных Турецких землетрясений 6 февраля 2023 г. (Mw = 7.8 и Mw = 7.7) по данным поверхностных волн // Физика Земли. 2023. № 6. С. 89–102. doi: 10.31857/S0002333723060078
- Фомочкина А.C., Филиппова А.И. очаговые параметры Улахан-Чистайского землетрясения 20 января 2013 г. (Якутия) по данным поверхностных волн // Вопросы инженерной сейсмологии. 2023. Т. 50. № 3. С. 17–29. https://doi.org/10.21455/VIS2023.3-2
- Шипилов Э.В., Лобковский Л.И., Шкарубо С.И., Кириллова Т.А. Геодинамические обстановки в зоне сопряжения хребта Ломоносова и Евразийского бассейна с континентальной окраиной Евразии // Геотектоника. 2021. № 5. С. 3–26. doi: 10.31857/S0016853X21050076
- Albuquerque Seismological Laboratory (ASL)/USGS. 1992. New China Digital Seismograph Network [Data set]. International Federation of Digital Seismograph Networks.https://doi.org/10.7914/SN/IC
- Albuquerque Seismological Laboratory/USGS. 2014. Global Seismograph Network (GSN – IRIS/USGS) [Data set]. International Federation of Digital Seismograph Networks.https://doi.org/10.7914/SN/IU
- Avetisov G.P. Geodynamics of the zone of continental continuation of Mid-Arctic earthquakes belt (Laptev Sea) // Physics of the Earth and Planetary Interiors. 1999. V. 114. № 1–2. P. 59–70. https://doi.org/10.1016/S0031-9201(99)00046-1
- Bird P. An updated digital model of plate boundaries // Geochem. Geophys. Geosyst. 2003. V. 4. № 3. 1027. doi: 10.1029/2001GC000252
- Drachev S.S., Shkarubo S.I. Tectonics of the Laptev Shelf, Siberian Arctic. In: Pease V., Coakley B. (Eds.) Circum-Arctic Lithosphere evolution. Geological Society, London, Special Publications, 2017. V. 460. P. 263–283. https://doi.org/10.1144/SP460.15
- Drachev S.S., Savostin L.A., Groshev V.G., Bruni I.E. Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic // Tectonophysics. 1998. V. 298. № 4. P. 357–393. https://doi.org/10.1016/S0040-1951(98)00159-0
- Dziewonski A.M., Anderson D.L. Preliminary Reference Earth Model // Phys. Earth Planet. Inter. 1981. V. 25. N 4. P. 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
- Dziewonski A.M., Chou T.-A., Woodhouse J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // Journal of Geophysical Research: Solid Earth. 1981. V. 86. P. 2825–2852. doi: 10.1029/JB086iB04p02825
- Ekström G, Nettles M., Dziewonski A.M. The Global CMT project 2004–2010: Centroid moment tensors for 13.017 earthquakes // Physics of the Earth and Planetary Interiors. 2012. V. 200–201. P. 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
- ETOPO 2022: 15 Arc-Second Global Relief Model, 2024.Available from https://www.ncei.noaa.gov/products/etopo-global-relief-model. Last accessed February 15, 2024. doi: 10.25921/fd45-gt74
- Filippova A.I., Melnikova V.I. Crustal stresses in the East Arctic region from new data on earthquake focal mechanisms // Tectonics. 2023. V. 42. e2022TC007338. https://doi.org/10.1029/2022TC007338
- Filippova A.I., Filippov S.V., Radziminovich Ya.B. Thermal state of the lithosphere beneath the Laptev Sea: Geodynamic implications from geomagnetic data // Journal of Asian Earth Sciences. 2024. V. 261. 105970. https://doi.org/10.1016/j.jseaes.2023.105970
- Franke D., Hinz K., Oncken O. The Laptev Sea rift // Marine and Petroleum Geology. 2001. V. 18. № 10. P. 1083–1127. https://doi.org/10.1016/S0264-8172(01)00041-1
- Gaina C., Roest W.R., Müller R.D. Late Cretaceous-Cenozoic deformation of northeast Asia // Earth and Planetary Science Letters. 2002. V. 197. № 3–4. P. 273–286. https://doi.org/10.1016/S0012-821X(02)00499-5
- GEOFON Moment Tensor Solutions, 2024.On-line Catalog. Helmholtz-Zentrum, Potsdam, Germany. Available from https://geofon.gfz-potsdam.de. Last accessed February 15, 2024.
- Geoscience Australia, 2024. On-line Catalog. Australia. Available from https://www.ga.gov.au and http://www.isc.ac.uk. Last accessed February 15, 2024.
- Global CMT Web Page, 2024. On-line Catalog. Lamont-Doherty Earth Observatory (LDEO) of Columbia University, Columbia, SC, USA. Available from http://www.globalcmt.org. Last accessed February 15, 2024.
- Gramberg I.S., Verba V.V., Verba M.L., Kos’ko M.K. Sedimentary cover thickness map – sedimentary basins in the Arctic // Polarforschung. 1999. V. 69. P. 243–249.
- Hanks T., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979.84. B5. P. 2348–2350. https://doi.org/10.1029/JB084iB05p02348
- Heidbach O., Rajabi M., Cui X., Fuchs K., Müller B., Reinecker J., Reiter K., Tingay M., Wenzel F., Xie F., Ziegler M.O., Zoback M.-L., Zoback M. The World Stress Map database release 2016: Crustal stress pattern across scales // Tectonophysics. 2018. V. 744. P. 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
- Imaeva L., Gusev G., Imaev V., Mel’nikova V. Neotectonic activity and parameters of seismotectonic deformations of seismic belts in Northeast Asia // Journal of Asian Earth Sciences. 2017. V. 148. P. 254–364. http://dx.doi.org/10.1016/j.jseaes.2017.09.007
- International Seismological Centre, 2024. On-line Bulletin. Internatl.Seis.Cent., Thatcham, United Kingdom. Available from http://www.isc.ac.uk. Last accessed February 15, 2024.
- Kagan Y.Y. Simplified algorithms for calculating double-couple rotation // Geophys. J. Int. 2007. V. 171. № 1. P. 411–418. https://doi.org/10.1111/j.1365-246X.2007.03538.x
- Lasserre C., Bukchin B., Bernard P., Tapponier P., Gaudemer Y., Mostinsky A., Dailu R. Source parameters and tectonic origin of the 1996 June 1 Tianzhu (Mw = 5.2) and 1995 July 21 Yongen (Mw = 5.6) earthquakes near the Haiyuan fault (Gansu, China) // Geophys. J. Int. 2001. V. 144. № 1. P. 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x
- Lebedev S., Schaeffer A.J., Fullea J., Pease V. Seismic tomography of the Arctic region: inferences for the thermal structure and evolution of the lithosphere. In: Pease, V., Coakley, B. (Eds.), Circum-Arctic Lithosphere evolution. Geological Society, London, Special Publications, 2017. V. 460. P. 419–440. https://doi.org/10.1144/SP460.10
- Mazur S., Campbell S., Green C., Bouatmani R. Extension across the Laptev Sea continental rifts constrained by gravity modeling // Tectonics. 2015. V. 34. № 3. P. 435–448. https://doi.org/10.1002/2014TC003590
- Nataf H.-C., Ricard Y. 3SMAC: on a priori tomographic model of the upper mantle based on geophysical modeling // Phys. Earth Planet. Inter. 1996. V. 95. № 1–2. P. 101–122. https://doi.org/10.1016/0031-9201(95)03105-7
- National Earthquake Information Center, 2024. On-line Catalog. US Geological Survey, USA Available from https://earthquake.usgs.gov. Last accessed February 15, 2024.
- Northern California Earthquake Data Center. 2014. Berkeley Digital Seismic Network (BDSN) [Data set]. Northern California Earthquake Data Center. https://doi.org/10.7932/BDSN
- Petrov O., Morozov A., Shokalsky S., Kashubin S., Artemieva I.M., Sobolev N., Petrov E., Ernst R.E., Sergeev S., Smelror M. Crustal structure and tectonic model of the Arctic Region // Earth-Science Reviews. 2016. V. 154. P. 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013
- Scripps Institution of Oceanography. 1986. Global Seismograph Network – IRIS/IDA [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II
- Seredkina A.I., Melnikova V.I. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt // Journal of Seismology. 2018. V. 22. № 5. P. 1211–1224. https://doi.org/10.1007/s10950-018-9762-9
- Sibson R.H. Roughness at the base of the seismogenic zone: contributing factors // Journal of Geophysical Research: Solid Earth. 1984. V. 89. № B7. P. 5791–5799. https://doi.org/10.1029/JB089iB07p05791
- Sloan R.A., Jackson J.A., McKenzie D, Priestley K. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension // Geophysical Journal International. 2011. V. 185. № 1. P. 1–29. https://doi.org/10.1111/j.1365-246X.2010.04882.x
- Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. № 10. P. 4489–4503. https://doi.org/10.5194/essd-14-4489-2022
Supplementary files
