Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting
- Authors: Novikov V.A.1,2, Sorokin V.M.3
-
Affiliations:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
- Issue: No 5 (2024)
- Pages: 97-112
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/272054
- DOI: https://doi.org/10.31857/S0002333724050078
- EDN: https://elibrary.ru/EJWLDI
- ID: 272054
Cite item
Abstract
Previously conducted numerical studies of the influence of class X solar flares on seismic activity have shown that the absorption of X-ray radiation from a solar flare in the ionosphere can cause pulsations of the geomagnetic field up to 100 nT and the corresponding generation of telluric currents in faults in the Earth’s crust with a density of up to 10–6 A/m2, which is comparable to the current density created in the Earth’s crust by artificial pulse sources and leading to the initiation of weak earthquakes in the Pamirs and Northern Tien Shan. To verify these numerical results, an analysis was conducted of the possible impact of the 50 strongest class X flares (1997–2023) on both global seismic activity and earthquake-preparation zones located only on the illuminated part of the globe. The method of superimposing epochs has established an increase in number of earthquakes M ≥ 4.5 within 10 days after a solar flare, especially in the area with a radius of 5000 km around the subsolar point (up to 68% for flare class >X5), compared to the same period before it. Analysis of aftershock activity of the strong Sumatra–Andaman earthquake (M = 9.1, December 26, 2004) showed that the number of aftershocks with magnitude M ≥ 2.5 increased more than 17 times after the X10.1 class solar flare (January 20, 2005) with a delay of 7–8 days. In addition, it has been shown that solar flares of class X2.3 and M3.64, which occurred after the Darfield earthquake (M = 7.1, September 3, 2010, New Zealand), in the area of subsolar points of which the aftershock zone was located, probably caused three strong aftershocks (M6.3, M5.2, and M5.9) with the same delay of 6 days on the Port Hills fault, which is the most sensitive to external electromagnetic influences in terms of its electrical conductivity and orientation. Taking into account the concept of earthquake forecasting based on trigger effects proposed by G.A. Sobolev, the possibility is discussed of using the obtained results for short-term forecasting as additional information along with known precursors.
About the authors
V. A. Novikov
Joint Institute for High Temperatures, Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
Author for correspondence.
Email: novikov@ihed.ras.ru
Russian Federation, Moscow, 125412; Moscow, 119334
V. M. Sorokin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: sova@izmiran.ru
Russian Federation, Moscow, 142191
References
- Завьялов А.Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. М.: Наука. 2006. 254 с.
- Закржевская Н.А., Соболев Г.А. О возможном влиянии магнитных бурь на сейсмичность // Физика Земли. 2002. № 4. С. 3–15.
- Зейгарник В.А., Богомолов Л.И., Новиков В.А. Электромагнитное инициирование землетрясений: полевые наблюдения, лабораторные эксперименты и физические механизмы (Обзор) // Физика Земли. 2022. № 1. С. 35–66. https://doi.org/10.31857/S0002333722010100
- Соболев Г.А., Закржевская Н.А., Харин Е.П. О связи сейсмичности с магнитными бурями // Физика Земли. 2001. № 11. С. 62–72.
- Соболев Г.А. Влияние больших магнитных бурь на возникновение больших землетрясений // Физика Земли. 2021. № 1. С. 24–40.
- Кочарян Г.Г., Виноградов Е.А., Горбунова Э.М., Марков В.К., Марков Д.В., Перник Л.М. Гидрогеологический отклик подземных коллекторов на сейсмические колебания // Физика Земли. № 12. 2011. С. 50–62.
- Новиков В.А., Сорокин В.М., Ященко А.К., Мушкарев Г.Ю. Физическая модель и численные оценки теллурических токов, генерируемых рентгеновским излучением солнечной вспышки // Динамические процессы в геосферах. 2023. Т. 15. № 1. С. 23–44. https://doi.org/10.26006/29490995_2023_15_1_23
- Akhoondzadeh M., De Santis A. Is the Apparent Correlation between Solar-Geomagnetic Activity and Occurrence of Powerful Earthquakes a Casual Artifact? // Atmosphere. 2022. V. 13. P. 1131. https://doi.org/10.3390/atmos13071131
- Anagnostopoulos G., Spyroglou I., Rigas A., Preka-Papadema P., Mavromichalaki H., Kiosses I. The sun as a significant agent provoking earthquakes // The European Physical Journal Special Topics. 2021. V. 230. P. 287–333. https://doi.org/10.1140/epjst/e2020-000266-2
- Day and Night World Map. Интернет-ресурс: https://www.timeanddate.com/worldclock /sunearth.html) (доступ 18.04.2024).
- Dzeboev B.A., Gvishiani A.D., Agayan S.M., Belov I.O., Karapetyan J.K., Dzeranov B.V., Barykina Y.V. System-Analytical Method of Earthquake-Prone Areas Recognition // Applied Sciences. 2021. № 11. P. 7972. https://doi.org/10.3390/app11177972
- Brodsky E., Roeloffs E., Woodcock D., Gall I., Manga M. A mechanism for sustained ground water pressure changes induced by distant earthquakes // J. Geophys. Res. 2003. № 108. Р. 2390–2400.
- Brodsky E.E., Prejean S.G. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera // J. Geophys. Res. 2005. V. 110. B04302. 10.1029/2004JB003211' target='_blank'>https://doi: 10.1029/2004JB003211
- Ingham M., Brown C. A magnetotelluric study of the Alpine Fault, New Zealand // Geophysical Journal International. 1998. № 2. P. 542–552. https://doi.org/10.1046/j.1365-246X.1998.00659.x
- INTERMAGNET Data Viewer. Интернет-ресурс: https://imag-data.bgs.ac.uk/GIN_V1 /GINForms2 (доступ 18.04.2024).
- Jones A.G., Kurtz R.D., Boerner D.E., Craven J.A., McNeice G.W., Gough D.I., DeLaurier J.M., Ellis R.G. Electromagnetic constraints on strike-slip fault geometry – The Fraser River fault system // Geology. 1992. № 20. P. 561–564. https://doi.org/10.1130/0091-7613(1992)020<0561:ECOSSF> 2.3.CO2
- Lanzerotti L.J., Gregori G.P. Telluric currents: The natural environment and interaction with man-made systems. The Earth’s Electrical Environment. Washington D.C.: The National Academic Press. 1986. P. 232-257.
- Ledo J., Jones A.G.,Ferguson I.J. Electromagnetic images of a strike-slip fault: The Tintina fault-Northern Canadian // Geophysical Research Letters. 2002. № 29. P. 1225. https://doi.org/10.1029/2001GL013408
- Love J.J., Thomas J.N. Insignificant solar-terrestrial triggering of earthquakes // Geophysical Research Letters. 2013. № 40. P. 1165–1170. https://doi.org/10.1002/grl.50211
- Mackie R.L., Livelybrooks D.W., Madden T.R., Larsen J.C. A magnetotelluric investigation of the San Andreas Fault at Carrizo Plain, California // Geophysical Research Letters. 1997. № 24. P. 1847–1850. https://doi.org/10.1029/97GL01604
- Novikov V.A., Okunev V.I., Klyuchkin V.N., Liu J., Ruzhin Yu.Ya., Shen X. Electrical triggering of earthquakes: results of laboratory experiments at spring-block models // Earthquake Science. 2017. V. 30. № 4. P. 167–172. doi: 10.1007/s11589-017-0181-8
- Novikov V., Ruzhin Yu., Sorokin V., Yaschenko A. Space weather and earthquakes: possible triggering of seismic activity by strong solar flares // Annalls of Geophysics. 2020. № 63(5). P. A554. https://doi.org/10.4401/ag-7975
- Polyanskaya E.A., Solovieva M.S., Pilipenko V.A., Korkina G.M. Monitoring of the Solar Flare Impact on the Ionosphere with VLF Radio Sounding and Magnetometers / Kosterov A., Lyskova E., Mironova I., Apatenkov S., Baranov S. (eds.). Problems of Geocosmos-2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. 2023. P. 361–373. https://doi.org/10.1007/978-3-031-40728-4_27
- Real-time data and plots auroral activity. Интернет-ресурс: https://www.spaceweatherlive.com/en/solar-activity/top-50-solar-flares.html (доступ 11.03.2024).
- Rebetsky Yu.L., Sim L.A., Marinin A.V. Algorithm for calculating neotectonic stresses in platform areas by the structural-geomorphological method // Geodynamics & Tectonophysics. 2022. V. 13. № 1. P. 0577. doi: 10.5800/GT-2022-13-1-0577
- Scoville J., Heraud J., Freund F. Pre-earthquake magnetic pulses // Natural Hazards and Earth System Sciences. 2015. № 15. P. 1873–1880. https://doi.org/10.5194/nhess-15-1873-2015
- Search Earthquake Catalog. Интернет-ресурс: https://earthquake.usgs.gov/earthquakes/search/ (доступ 18.04.2024).
- Sobolev G.A. Seismicity dynamics and earthquake predictability // Natural Hazards and Earth System Sciences. 2011. № 11. P. 445–458. https://doi.org/10.5194/nhess-11-445-2011
- Sorokin V.M., Yashchenko A.K., Novikov V.A. A possible mechanism of stimulation of seismic activity by ionizing radiation of solar flares // Earthquake Sciences. 2019. V. 32. № 1. P. 26–34. https://doi.org/10.29382/eqs-2019-0026-3
- Sorokin V.M., Yashchenko A.K., Mushkarev G.Yu., Novikov V.A. Telluric Currents Generated by Solar Flare Radiation: Physical Model and Numerical Estimations // Atmosphere. 2023. V. 14. № 3. P. 458. https://doi.org/10.3390/atmos14030458
- Stanley W.D., Labson V.F., Nokleberg W.J., Csejtey B., Fisher M.A. The Denali fault system and Alaska Range of Alaska: Evidence for underplated Mesozoic flysch from magnetotelluric surveys // Bulletin of Geological Society of America. 1990. № 102. P. 160–173. https://doi.org/10.1130/0016-7606(1990)102<0160:TDFSAA>2.3.CO2
- Tarasov N.T., Tarasova N.V. Spatial-temporal structure of seismicity of the Norh Tien Shan and its change under effect of high energy electromagnetic pulses // Annals of Geophysics. 2004. V. 47. № 1. P. 199–212. https://doi.org/10.4401/ag-3272
- Tarasov N.T., Tarasova N.V., Avagimov A.A., Zeigarnik V.A. The Effect of High Energy Electromagnetic Pulses on Seismicity in Central Asia and Kazakhstan // Volcanology and Seismology. 2000. V. 21. P. 627–639.
- Thomson A.W.P., McKay A.J., Viljanen A. A Review of Progress in Modelling of Induced Geoelectric and Geomagnetic Fields with Special Regard to Induced Currents // Acta Geophysics. 2009. V. 57. № 1. P. 209–219. https://doi.org/10.2478/s11600-008-0061-7
- Unsworth M.J., Malin P.E., Egbert G.D., Booker J.R. Internal Structure of the San Andreas Fault Zone at Parkfield, California // Geology. 1997. № 25. P. 359–362. https://doi.org/10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO2
Supplementary files
