Parameters of the Seismic Regime of the Eastern Sector of the Arctic Zone of the Russian Federation
- Authors: Vorobieva I.A.1,2, Shebalin P.N.1,2, Gvishiani A.D.1, Dzeboev B.A.1, Dzeranov B.V.1, Malyutin P.A.2
-
Affiliations:
- Geophysical Center of the Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Issue: No 5 (2024)
- Pages: 38-56
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/272042
- DOI: https://doi.org/10.31857/S0002333724050034
- EDN: https://elibrary.ru/EKBCKX
- ID: 272042
Cite item
Abstract
This work constructs a seismic regime model for the eastern sector of the Arctic Zone of the Russian Federation (AZRF) based on a newly developed, comprehensive integral earthquake catalog for the region, using a uniform magnitude scale from 1982 to 2020. The model parameters are calculated using a novel high-contrast mean-position method, where values are determined within large-radius circles but are assigned to the mean position of epicenters. A quantitative verification method, the L-test, based on the likelihood function, demonstrates that the model aligns well with the initial data. The magnitude–frequency distribution reconstructed from the model corresponds well to observations, both in terms of slope and the number of earthquakes. The epicenters of the largest earthquakes (M ≥ 6) from both the 1982–2020 period and the 1900–1981 period, according to the Kondorskaya–Shebalin catalog, are located in areas with high expected recurrence of such earthquakes as calculated by the model.
About the authors
I. A. Vorobieva
Geophysical Center of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 119296; Moscow, 117997
P. N. Shebalin
Geophysical Center of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Author for correspondence.
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 119296; Moscow, 117997
A. D. Gvishiani
Geophysical Center of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 119296
B. A. Dzeboev
Geophysical Center of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 119296
B. V. Dzeranov
Geophysical Center of the Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 119296
P. A. Malyutin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Moscow, 117997
References
- Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. М.: РАН. 2019. 218 с.
- Имаев В.С., Имаева Л.П., Козьмин Б.М. Сильное Улахан-Чистайское землетрясение 20 января 2013 года (Мs = 5.7) в зоне влияния системы разлома Улахан на Северо-Востоке России // Вестник Санкт-Петербургского университета. Науки о Земле. 2020. Т. 65. Вып. 4. С. 740–759. doi: 10.21638/spbu07.2020.408
- Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб: 1:8 000 000. 1999 г. / В.Н. Страхов, В.И. Уломов (гл. ред.). Объединенный институт физики Земли им. О.Ю. Шмидта РАН. 4 листа.
- Кондорская Н.В., Шебалин Н.В. (ред.). Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. 1977. 536 с.
- Никонов А.А. Определение магнитуд и повторяемости сильных землетрясений прошлого по сейсмодислокациям (на примере зоны сочленения Памира и Тянь-шаня) // Докл АН СССР. 1980. Т. 250. № 3. С. 336.
- Ризниченко Ю.В. Oб изучении сейсмического режима // Изв. АН СССР. Сер. Геофизическая. 1958. № 9. С. 1057–1074.
- Ризниченко Ю.В. Сейсмический режим и сейсмическая активность. Сейсмическое районирование территории СССР. М.: Наука. 1980. С. 47–58.
- Сейсмическое районирование территории СССР: методические основы и региональное описание карты 1978 г. М.: Наука. 1980. 307 с.
- Шебалин Н.В. Количественная макросейсмика (фрагменты незавершенной монографии). Магнитное поле Земли: математические методы описания. Проблемы макросейсмики. Вычислительная сейсмология; Вып. 34. М.: ГЕОС. 2003. С. 57–200.
- Шебалин П.Н., Гвишиани А.Д., Дзебоев Б.А., Скоркина А.А. Почему необходимы новые подходы к оценке сейсмической опасности? // Докл. РАН. Науки о Земле. 2022. Т. 507. № 1. С. 91–97. doi: 10.31857/S2686739722601466
- Akinci A., Moschetti M.P., Taroni M. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard map // Seismological Research Letters. 2018. V. 89. № 4. P. 1277–1287. doi: 10.1785/0220180040
- Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Physical Review E. 2004. V. 69. Is. 6. P. 066106-1–066106-8. DOI: 10.1103/ PhysRevE.69.066106
- Baranov S.V., Narteau C., Shebalin P.N. Modeling and Prediction of Aftershock Activity // Surveys in Geophysics. 2022. V. 43. P. 437–48. doi: 10.1007/s10712-022-09698-0
- Bender B. Maximum likelihood estimation of b-values for magnitude grouped data // Bulletin of the Seismological Society of America. 1983. V. 73. P. 831–851.
- Bird P. An updated digital model of plate boundaries // Geochemistry, Geophysics, Geosystems. 2003. V. 4. Is. 3. P. 1027. doi: 10.1029/2001GC000252
- Chebrov V.N. The Olyutorskii earthquake of April 20, 2006: Organizing surveys, observations, problems, and results // Volcanology and Seismology. 2010. V. 4. P. 75–78. doi: 10.1134/S0742046310020016
- Christophersen A., Litchfield N., Berryman K., Thomas R., Basili R., Wallace L., et al. Development of the Global Earthquake Model’s neotectonic fault database // Natural Hazards. 2015. V. 79. P. 111–135. doi: 10.1007/s11069-015-1831-6
- Cornell C.A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968. V. 58. Is. 5. P. 1583–1606.
- Daragan-Sushchova L.A., Petrov O.V., Sobolev N.N., Daragan-Sushchov Y.I., Grin’ko L.R., Petrovskaya N.A. Geology and tectonics of the northeast Russian Arctic region, based on seismic data // Geotectonics. 2015. V. 49. P. 469–484. doi: 10.1134/S0016852115060023
- Frankel A. Mapping seismic hazard in the central and eastern United States // Seismological Research Letters. 1995. V. 66. № 4. P. 8–21. doi: 10.1785/gssrl.66.4.8
- Gardner J.K., Knopoff L. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? // Bulletin of the Seismological Society of America. 1974. V. 64. P. 1363–1367.
- Gerstenberger M.C., Marzocchi W., Allen T., Pagani M., Adams J., Danciu L., et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020. V. 58. e2019RG000653. doi: 10.1029/2019RG000653
- Giardini D., Grunthal G., Shedlock K.M., Zhang P. The GSHAP Global Seismic Hazard Map // Annali di Geofisica. 1999. V. 42. Is. 6. P. 1225–1228. doi: 10.4401/ag-3784
- Grassberger P., Procaccia I. Measuring the Strangeness of Strange Attractors // Physica D: Nonlinear Phenomena. 1983. V. 9. P. 189–208. doi: 10.1016/0167-2789(83)90298-1
- Gutenberg B., Richter C.F. Frequency of earthquakes in California // Bulletin of the Seismological Society of America. 1944. V. 34. № 4. P. 185–188.
- Gvishiani A.D., Vorobieva I.A., Shebalin P.N., Dzeboev B.A., Dzeranov B.V., Skorkina A.A. Integrated earthquake catalog of the Eastern sector of the Russian Arctic // Applied Sciences (Switzerland). 2022. V. 12. № 10. P. 5010. doi: 10.3390/app12105010
- Hamling I.J., Hreinsdóttir S., Clark K., Elliott J., Liang C., Fielding E., et al. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand // Science. 2017. V. 356. № 6334. doi: 10.1126/science.aam7194
- Helmstetter A., Werner M.J. Adaptive spatiotemporal smoothing of seismicity for longterm earthquake forecasts in California // Bulletin of the Seismological Society of America. 2012. V. 102. Is. 6. P. 2518–2529. doi: 10.1785/0120120062
- Howarth J.D., Cochran U.A., Langridge R.M., Clark K., Fitzsimons S.J., Berryman K., et al. Past large earthquakes on the Alpine Fault: Paleoseismological progress and future directions // New Zealand Journal of Geology and Geophysics. 2018. V. 61. Is. 3. P. 309–328. doi: 10.1080/00288306.2018.1464658
- Imaeva L.P., Imaev V.S., Koz’min B.M. Dynamics of the Zones of Strong Earthquake Epicenters in the Arctic–Asian Seismic Belt // Geosciences. 2019. V. 9. Is. 4. 168. doi: 10.3390/geosciences9040168
- Kagan Y.Y., Jackson D.D., Geller R.J. Characteristic Earthquake Model, 1884–2011, R.I.P. // Seismological Research Letters. 2012. V. 83. Is. 6. P. 951–953. doi: 10.1785/0220120107
- Kanao M., Suvorov V., Toda S., Tsuboi S. Seismicity, structure and tectonics in the Arctic region // Geoscience Frontiers. 2015. V. 6. Is. 5. P. 665–677. doi: 10.1016/j.gsf.2014.11.002
- Kondorskaya N.V., Shebalin N.V. New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977. Report SE-31. Translated and Published by World Data Center A for Solid Earth Geophysics, EDIS, Boulder, Colorado. July 1982. 608 p.
- Kossobokov V.G., Mazhkenov S.A. On similarity in the spatial distribution of seismicity // Computational seismology and geodynamics. EOS: Transactions, American Geophysical Union. 1994. V. 1. P. 6–21.
- Lander A.V., Levina V.I., Ivanova E.I. The earthquake history of the Koryak Upland and the aftershock process of the MW 7.6 April 20(21), 2006 Olyutorskii earthquake // Volcanology and Seismology. 2010. V. 4. P. 87–100. doi: 10.1134/S074204631002003X
- Marsan D., Lengline J. Extending Earthquakes’ Reach Through Cascading // Science. 2008. V. 319. P. 1076–1079. doi: 10.1126/science.1148783
- Molchan G.M., Dmitrieva O.E. Aftershock Identification: Methods and New Approaches // Geophysical Journal International. 1992. V. 109. Is. 3. P. 501–516. doi: 10.1111/j.1365-246x.1992.tb00113.x
- Pagani M., Monelli D., Weatherill G. et al. Openquake engine: An open hazard (and risk) software for the global earthquake model // Seismological Research Letters. 2014. V. 85. Is. 3. P. 692–702. doi: 10.1785/0220130087
- Pisarenko V.F., Pisarenko D.V. A Modified k-Nearest-Neighbors Method and Its Application to Estimation of Seismic Intensity // Pure and Applied Geophysics. 2022. V. 179. № 11. P. 4025–4036. doi: 10.1007/s00024-021-02717-y
- Reasenberg P. Second-order moment of central California seismicity, 1969–1982 // Journal of Geophysical Research: Solid Earth (1978–2012). 1985. V. 90. Is. B7. P. 5479–5495.
- Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V., Novikov S.S. A geological study of the epicentral area of the April 20(21), 2006 Olyutorskii earthquake // Volcanology and Seismology. 2010. V. 4. P. 79–86. doi: 10.1134/S0742046310020028
- Schwartz D.P., Coppersmith K.J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones // Journal of Geophysical Research. 1984. V. 89. № B7. P. 5681–5698.
- Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. Is. 2. P. 1264–126913. doi: 10.1093/gji/ggaa252
- Shebalin P., Baranov S., Vorobieva I. Earthquake Productivity Law in a Wide Magnitude Range // Frontiers in Earth Science. 2022. V. 10. 881425. doi: 10.3389/feart.2022.881425
- Shebalin P.N., Baranov S.V., Vorobieva I.A., Grekov E.M., Krushelnitskii K.V., Skorkina A.A., Selyutskaya O.V. Seismicity Modeling in Tasks of Seismic Hazard Assessment // Doklady Earth Sciences. 2024. doi: 10.1134/S1028334X23603115
- Shibaev S.V., Kozmin B.M., Imaev V.S., Imaeva L.P., Petrov A.F., Starkova N.N. The February 14, 2013 Ilin-Tas (Abyi) earthquake (Mw = 6.7), Northeast Yakutia // Russian Journal of Seismology. 2020. V. 2. № 1. P. 92–102. doi: 10.35540/2686-7907.2020.1.09
- Skorkina A.A. Scaling of two corner frequencies of source spectra for earthquakes of the Bering fault // Russian Journal of Earth Sciences. 2020. V. 20. № 2. ES2001. doi: 10.2205/2020ES000704
- Spada M., Wiemer S., Kissling E. Quantifying a potential bias in probabilistic seismic hazard assessment; seismotectonic zonation with fractal properties // Bulletin of the Seismological Society of America. 2011. V. 101. Is. 6. P. 2694–2711.
- Stock C., Smith E.G.C. Adaptive kernel estimation and continuous probability representation of historical earthquake catalogs // Bulletin of the Seismological Society of America. 2002. V. 92(3). P. 904–912. doi: 10.1785/0120000233
- Ulomov V.I. Seismic hazard of Northern Eurasia // Annali di Geofisica. 1999. V. 42. Is. 6. P. 1023–1038. doi: 10.4401/ag-3785
- Van Stiphout T., Zhuang J., Marsan D. Seismicity declustering // Community Online Resource for Statistical Seismicity Analysis. 2012. CORSSA. doi: 10.5078/corssa-52382934
- Vorobieva I.A., Grekov E.M., Krushelnitskii K.V., Malyutin P.A., Shebalin P.N. High Resolution Seismicity Smoothing Method for Seismic Hazard Assessment // Russian Journal of Earth Sciences. 2024.V. 24. ES1003. doi: 10.2205/2024ES000892
- Vorobieva I., Shebalin P., Narteau C., Beauducel F., Nercessian A., Clouard V., Bouin M.-P. Multiscale mapping of completeness magnitude of earthquake catalogs // Bulletin of the Seismological Society of America. 2013. V. 103. Is. 4. P. 2188–2202. doi: 10.1785/0120120132
- Vorobieva I.A., Gvishiani A.D., Dzeboev B.A., Dzeranov B.V., Barykina Yu.V., Antipova A.O. Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogs // Frontiers in Earth Science. 2022. V. 10. 820277. doi: 10.3389/feart.2022.820277
- Wesnousky S.G. Crustal deformation processes and the stability of the Gutenberg-Richter relationship // Bulletin of the Seismological Society of America. 1999. V. 89. № 4. P. 1131–1137.
- Wessel P., Luis J.F., Uieda L., Scharroo R., Wobbe F., Smith W.H.F., Tian D. Generic mapping tools version 6 // Geochemistry, Geophysics, Geosystems.2019. V. 20. P. 5556–5564. doi: 10.1029/2019gc008515
- Wyss M., Nekrasova A., Kossobokov V. Errors in expected human losses due to incorrect seismic hazard estimates // Natural Hazards. 2012. V. 62. Is. 3. P. 927–935. doi: 10.1007/s11069-012-0125-5
- Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: identification and stability // Journal of Geophysical Research. 2013. V. 118. P. 2847–2864. doi: 10.1002/jgrb.50179
- Zechar J.D., Gerstenberger M.C., Rhoades D.A. Likelihood-based tests for evaluating space–rate–magnitude earthquake forecasts // Bulletin of the Seismological Society of America. 2010. V. 100. № 3. P. 1184–1195. doi: 10.1785/0120090192
- Zelenin E., Bachmanov D., Garipova S., Trifonov V., Kozhurin A. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503. doi: 10.5194/essd-14-4489-2022
- Zhuang J., Ogata Y., Vere-Jones D. Stochastic declustering of space-time earthquake occurrences // Journal of the American Statistical Association. 2002. V. 97. P. 369–380. doi: 10.1198/016214502760046925
Supplementary files
