A Study of Seismic Cycles of the Strongest Earthquakes in Subduction Zones by Satellite Geodesy Methods
- Authors: Vladimirova I.S.1,2
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Federal Research Center “Geophysical Survey of the Russian Academy of Sciences”
- Issue: No 5 (2024)
- Pages: 17-37
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/272041
- DOI: https://doi.org/10.31857/S0002333724050029
- EDN: https://elibrary.ru/EKDTOG
- ID: 272041
Cite item
Abstract
The work is devoted to modeling and studying geodynamic processes occurring in the vicinity of focal zones of the strongest (M ≥ 8) subduction earthquakes at different stages of the seismic cycle based on satellite geodetic data. The processes of preparation and realization of a number of powerful events that occurred in the Kuril–Kamchatka, Chilean, Japanese, and Aleutian subduction zones at the beginning of the 21st century were studied. Apparent spatial relationships have been identified between geodynamic processes occurring at different stages of the seismic cycle. It is shown that structural inhomogeneities of the medium have a direct impact on the processes of accumulation and release of elastic stresses.
About the authors
I. S. Vladimirova
Shirshov Institute of Oceanology, Russian Academy of Sciences; Federal Research Center “Geophysical Survey of the Russian Academy of Sciences”
Author for correspondence.
Email: ir.s.vladimirova@yandex.ru
Russian Federation, Moscow, 117218; Obninsk, 664033
References
- СПИСОК ЛИТЕРАТУРЫ
- Баранов С.В. Шебалин П.Н. О прогнозировании афтершоковой активности. 3. Динамический закон Бота // Физика Земли. 2018. № 6. С. 12–136.
- Владимирова И.С. Исследование особенностей сейсмогенной активизации Чилийской субдукционной зоны в начале XXI в. // Докл. РАН. Науки о Земле. 2022. Т. 507. № 2. С. 309–315.
- Конвисар А.М., Михайлов В.О., Волкова М.С., Смирнов В.Б. Модель поверхности сейсмического разрыва землетрясения “Чигник” (Аляска, США) 29.07.2021 по данным спутниковой радарной интерферометрии и ГНСС // Вулканология и сейсмология. 2023. № 5. С. 74–83.
- Лаверов Н.П., Лаппо С.С., Лобковский Л.И., Баранов Б.В., Кулинич Р.Г., Карп Б.Я. Центрально-Курильская “брешь”: строение и сейсмический потенциал // Докл. РАН. 2006. Т. 408. № 6. С. 818–821.
- Лобковский Л.И., Владимирова И.С., Габсатаров Ю.В., Гарагаш И.А., Баранов Б.В., Стеблов Г.М. Постсейсмические движения после Симуширских землетрясений 2006–2007 гг. на различных стадиях сейсмического цикла // Докл. РАН. 2017. Т. 473. № 3. С. 359–364.
- Лобковский Л.И., Владимирова И.С., Габсатаров Ю.В., Стеблов Г.М. Сейсмотектонические деформации, связанные с землетрясением Тохоку 2011 г., на разных стадиях сейсмического цикла по данным спутниковых геодезических наблюдений // Докл. РАН. 2018. T. 481. № 5. C. 548–552.
- Лутиков А.И., Рогожин Е.А. Вариации интенсивности глобального сейсмического процесса в течение ХХ – начале XXI веков // Физика Земли. 2014. № 4. С. 25–42.
- Михайлов В.О., Диаман М., Тимошкина Е.П., Хайретдинов С.А. Оценка относительной роли постсейсмического крипа и вязкоупругой релаксации после Симуширского землетрясения 15.11.2006 г. с использованием данных спутниковой геодезии и гравиметрии // Вестник МГУ. Сер. Физика и астрономия. 2018. № 5. С. 84–89.
- Михайлов В.О., Тимошкина Е.П., Смирнов В.Б., Хайретдинов С.А., Дмитриев П.Н. К вопросу о природе постсейсмических деформационных процессов в районе землетрясения Мауле, Чили, 27.02.2010 г. // Физика Земли. 2020. № 6. С. 38–47.
- Садовский М.А. Избранные труды:геофизика и физика взрыва. М.: Наука. 2004. 440 с.
- Стеблов Г.М., Лобковский Л.И., Владимирова И.С., Баранов Б.В., Сдельникова И.А., Габсатаров Ю.В. Сейсмотектонические деформации Курильской островной дуги на различных стадиях сейсмического цикла, связанные с Cимуширскими землетрясениями // Вулканология и сейсмология. 2018. № 6. С.57–69.
- Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука.1974. 222 с.
- Шебалин П.Н., Воробьева И.А., Баранов С.В., Михайлов В.О. Дефицит сильных афтершоков как индикатор постсейсмического проскальзывания в очагах землетрясений зон субдукции // Докл. РАН. Науки о Земле. 2021. Т. 498. № 1. С. 81–85.
- Baranov B.V., Ivanchenko A.I., Dozorova K.A. The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Islands Region // Pure and Applied Geophysics. 2015. V. 172. № 12. P. 3509–3535.
- Boyd T.M., Taber J.J., Lerner-Lam A.L., Beavan J. Seismic rupture and arc segmentation within the Shumagin Islands seismic gap, Alaska // Geophysical Research Letters. 1988. V. 15. № 3. P. 201–204.
- Bürgmann R., Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy and Field Observations // Annu. Rev. Earth Planet. Sci. 2008. V. 36. P. 531–567.
- Davies J., Sykes L., House L., Jacob K. Shumagin seismic gap, Alaska peninsula: history of great earthquakes, tectonic setting, and evidence for high seismic potential // J. Geophys. Res. 1981. V. 86. № B5. P. 3821–3855.
- Delouis B., Nocquet J.-M., Vallée M. Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data // Geophys. Res. Lett. 2010. V. 37. № L17305. P. 1–7.
- Drooff C., Freymueller J.T. New constraints on slip deficit on the Aleutian megathrust and inflation at Mt. Veniaminof, Alaska from repeat GPS measurements // Geophysical Research Letters. 2021. V. 48. № e2020GL091787. doi: 10.1029/2020GL091787
- Fournier T., Freymueller J. Transition from locked to creeping subduction in the Shumagin region, Alaska // Geophys. Res. Lett. 2007. V. 34. № L06303. doi: 10.1029/2006GL029073
- Geersen J., Ranero C.R., Barckhausen U., Reichert C. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area // Nature Communications. 2015. V. 6. P. 1–6. doi: 10.1038/ncomms9267
- Herman M.W., Furlong K.P. Triggering an unexpected earthquake in an uncoupled subduction zone // Sci. Adv. 2021. V. 7. № 13. doi: 10.1126/sciadv.abf7590
- Hoffmann F., Metzger S., Moreno M., Deng Z., Sippl C., Ortega-Culaciati F., Oncken O. (2018). Characterizing afterslip and ground displacement rate increase following the 2014 Iquique-Pisagua Mw 8.1 earthquake, Northern Chile // Journal of Geophysical Research: Solid Earth. 2018. V. 123. P. 4171–4192. doi: 10.1002/2017JB014970
- Jadamec M.A., Billen M.I. Reconciling surfaceplate motions with rapid three-dimensional mantle flowaround a slab edge // Nature. 2010. V. 465. P. 338–341.
- Kaneko Y., J.-P. Avouac, Lapusta N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling // Nat. Geosci. 2010. V. 3. № 5. P. 363–369. doi: 10.1038/NGEO843
- Kato H. Fossa Magna – A masked border region separating southwest and northeast Japan // Bull. Geol. Surv. Japan. 1992. V. 43. P. 1–30.
- Kogan M.G., Vasilenko N.F., Frolov D.I., Freymueller J.T., Steblov G.M., Levin B.W., Prytkov A.S. The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes // Geophys. Res. Lett. 2011. V. 38. № L06304. P. 3691–3706.
- Lay T., Yue H., Brodsky E.E., An C. The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence // Geophys. Res. Lett. 2014. V. 41. P. 3818–3825.
- Lay T. The surge of great earthquakes from 2004 to 2014 // Earth and Planetary Science Letters. 2015. V. 409. P. 133–146. doi: 10.1016/j.epsl.2014.10.047
- Lévêque J.-J., Rivera L., Wittlinger G. On the use of the checker-board test to assess the resolution of tomographic inversions // Geophys. J. Int. 1993. V. 115. P. 313–318.
- Li S., Freymueller J.T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone // Geophysical Research Letters. 2018. V. 45. P. 3453–3460.
- Lienkaemper J.J., McFarland F.S. Long‐term afterslip of the 2004 M 6.0 Parkfield, California, earthquake – implications for forecasting amount and duration of afterslip on other major creeping faults // Bulletin of the Seismological Society of America. 2017. V. 107. № 3. P. 1082–1093.
- Lin Y.N., Sladen A., Ortega-Culaciati F., Simons M., Avouac J.-P., Fielding E.J., Brooks B.A., Bevis M., Genrich J., Rietbrock A., Vigny C., Smalley R., Socquet A. Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect // J. Geophys. Res. 2013. V. 118. P. 3142–3159.
- Liu C., Lay T., Xiong X. The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula Earthquake Rupture Inferred From Seismic and Geodetic Observations: Re‐Rupture of the Western 2/3 of the 1938 Rupture Zone // Geophysical Research Letters. 2022. V. 49. № 4. doi: 10.1029/2021GL096004
- Liu J., Zhou Y. Predicting Earthquakes: The Mw9.0 Tohoku Earthquake and Historical Earthquakes in Northeastern Japan // International Journal of Disaster Risk Science. 2012. V. 3. № 3. P. 155–162.
- Ma Bo., Geersen J., Klaeschen D., Contreras-Reyes E., Riedel M., Xia Y., Tréhu A.M., Dietrich Lange D., Kopp H. Impact of the Iquique Ridge on structure and deformation of the north Chilean subduction zone // Journal of South American Earth Sciences. 2023. V. 124. 104262. doi: 10.1016/j.jsames.2023.104262
- Marone C.J., Scholz C.H., Bilham R.G. On the mechanics of earthquake afterslip // J. Geophys. Res. 1991. V. 96. № B5. P. 8441–8452.
- Minoura K., Imamura F., Sugawara D., Kono Y., Iwashita T. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan // J. Nat. Disaster Sci. 2001. V. 23. № 2. P. 83–88.
- Moreno M. S., Bolte J., Klotz J, Melnick D. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake // Geophys. Res. Lett. 2009. V. 36. № 16. doi: 10.1029/2009GL039276
- Moreno M., Rosenau M., Oncken O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone // Nature. 2010. V. 467. P. 198–202.
- Moreno M., Melnick D., Rosenau M., Baez J., Klotz J., Oncken O., Tassara A., Chen J., Bataille K., Bevis M., Socquet A., Bolte J., Vigny C., Brooks B., Ryder I., Grund V., Smalley B., Carrizo D., Bartsch M., Hase H. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake // EPSL. 2012. № 321–322. P. 152–165.
- Muto J., Moore J.D.P., Barbot S., Iinuma T., Ohta Y., Iwamori H. Coupled Afterslip and Transient Mantle Flow after the 2011 Tohoku Earthquake // Sci. Adv. 2019. V. 5. № 9: eaaw1164. https://doi.org/10.1126/sciadv.aaw1164
- Myers E., Roland E.C., Tréhu A., Davenport K. Crustal Structure of the Incoming Iquique Ridge Offshore Northern Chile // Journal of Geophysical Research: Solid Earth. 2022. V. 127. № 2. doi: 10.1029/2021JB023169
- Neo J.C., Huang Y., Yao D., Wei S. Is the Aftershock Zone Area a Good Proxy for387the Mainshock Rupture Area? // Bulletin of the Seismological Society of America. 2020. V. 111. № 1. P. 424–438.
- Nishenko S.P., Jacob K.H. Seismic potential of the Queen Charlotte-Alaska-Aleutian seismic zone // J. Geophys. Res. 1990. V. 95. P. 2511–2532.
- Ozawa S., Nishimura T., Suito H., Kobayashi T., Tobita M., Imakiire T. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake // Nature. 2011. V. 475. P. 373–377.
- Poli P., Maksymowicz A., Ruiz S. The Mw 8.3 Illapel earthquake (Chile): Preseismic and postseismic activity associated with hydrated slab structures // Geology. 2017. V. 45. doi: 10.1130/G38522.1
- Pollitz F.F.Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophys. J. Int. 1996. V. 125. P. 1–14.
- Pollitz F.F. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth // J. Geophys. Res. 1997. V. 102. № B8. P. 17921–17941.
- Reid H.The California earthquake of April18, 1906. V. 2: The mechanics of the earthquake. Washington, DC: Carnegie Institution of Washington. 1910. 206 р.
- Ruiz S.A, Madariaga R. Historical and recent large megathrust earthquakes in Chile // Tectonophysics. 2018. V. 733. P. 37–56.
- Savage J. C. A dislocation model of strain accumulation and release at a subduction zone // J. Geophys. Res. 1983. V. 88. № B6. P. 4984–4996.
- Sparkes R., Tilmann F., Hovius N., Hillier J. Subducted sea floor relief stops rupture in South American great earthquakes: Implications for rupture behaviour in the 2010 Maule, Chile earthquake // Earth and Planetary Science Letters. 2010. V. 298. № 1–2. P. 89–94.
- Steblov G.M., Kogan M.G., Levin B.V., Vasilenko N.F., Prytkov A.S., Frolov D.I. Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS // Geophys. Res. Lett. 2008. V. 35. № L22306. P. 1–5.
- Steblov G., Vladimirova I. Geodetic Inversions and Applications in Geodynamics / A. Ismail-Zadeh, F. Castelli, D. Jones, S. Sanchez (eds.). Applications of Data Assimilation and Inverse Problems in the Earth Sciences (Special Publicationsofthe International Union of Geodesy and Geophysics. 2023. Cambridge: Cambridge University Press. Р. 278–292). doi: 10.1017/9781009180412.019
- Schleicher A., Van der Pluijm B., Warr L. Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core // Lithosphere. 2012. № 3. P. 209–220.
- Tsuji Y., Satake K., Ishibe T, Harada T., Nishiyama A., Kusumoto. S. Tsunami heights along the Pacific coast of Northern Honshu recorded from the 2011 Tohoku and previous great earthquakes // Pure Appl. Geophys. 2014. V. 171. P. 3183–3215.
- Vladimirova I.S., Lobkovsky L.I., Gabsatarov Y.V., Steblov G.M., Vasilenko N.F., Prytkov A.S., Frolov D.I. Patterns of the seismic cycle in the Kuril island arc from GPS observations // Pure and Applied Geophysics. 2020. V. 177. № 8. P. 3599–3617.
- Zelt C.A., Azaria A., Levander A. 3D seismic refraction trave ltime tomography at a ground water contamination site // Geophysics. 2006. V. 71. № 5. P. H67–H78.
- Zhou Y., Wang W., He J., Wang X., Pan Z., Zhao G. The 19 October 2020 Mw 7.6 Earthquake in Shumagin, Alaska: An Unusual Dextral Strike-Slip Event // Pure and Applied Geophysics. 2022. V. 179. P. 3527–3542.
Supplementary files
