Postseismic processes in the region of the july 29, 2021 Chigni earthquake, Alaska. Part I: modeling results
- Authors: Konvisar A.M.1,2, Mikhailov V.O.1, Smirnov V.B.2,1, Timoshkina E.P.1
-
Affiliations:
- Schmidt Institute of Physics of the Earth, Russian Academy of Science
- Moscow State University
- Issue: No 4 (2024)
- Pages: 21-34
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/261796
- DOI: https://doi.org/10.31857/S0002333724040026
- EDN: https://elibrary.ru/FXIBIM
- ID: 261796
Cite item
Abstract
We analyze the postseismic processes in the region of the Mw 8.2 Chignik earthquake, which occurred on July 29, 2021. Using the seismic rupture surface model constructed in our previous paper (Konvisar et al., 2023), we have simulated the viscoelastic relaxation process. The results of the simulation have shown that reducing the viscosity of the asthenosphere to 1018 Pa ‧ s in the calculations gives displacement velocities close to those recorded at the GPS coastal points. However, the displacements on islands close to the earthquake source region differ significantly not only in magnitude but also in direction. At the same time, the constructed model of the postseismic creep is closely consistent with the GPS displacement data and with the LOS (line-of-sight) displacement map derived from radar images acquired from the descending orbit of Sentinel 1A satellite. We also analyze temporal variations of the gravity field in the earthquake region. The obtained coseismic anomaly agrees with the anomaly calculated from the rupture surface model. Due to the insufficiently long series of gravity models after the earthquake, it is not yet possible to isolate the postseismic anomaly. The analysis of the postseismic processes is continued in the second part of this work (Smirnov et al., 2024), where we present the compare the time evolution of the postseismic displacements of various GPS sites with the aftershock activity, which allows us to draw conclusions about the creep nature of the postseismic processes in the source region of the Chignik earthquake.
Full Text

About the authors
A. M. Konvisar
Schmidt Institute of Physics of the Earth, Russian Academy of Science; Moscow State University
Author for correspondence.
Email: alexkonvisar@gmail.com
Faculty of Physics
Russian Federation, Moscow, 123242; Moscow, 119991V. O. Mikhailov
Schmidt Institute of Physics of the Earth, Russian Academy of Science
Email: alexkonvisar@gmail.com
Russian Federation, Moscow, 123242
V. B. Smirnov
Moscow State University; Schmidt Institute of Physics of the Earth, Russian Academy of Science
Email: alexkonvisar@gmail.com
Faculty of Physics
Russian Federation, Moscow, 123242; Moscow, 119991E. P. Timoshkina
Schmidt Institute of Physics of the Earth, Russian Academy of Science
Email: alexkonvisar@gmail.com
Russian Federation, Moscow, 123242
References
- Конвисар А.М., Михайлов В.А., Волкова М.С., Смирнов В.Б. Модель поверхности сейсмического разрыва землетрясения “Чигник” (Аляска, США) 29.07.2021 г. по данным спутниковой радарной интерферометрии и ГНСС // Вулканология и сейсмология. 2023. № 5. С. 74–83. https://doi.org/10.31857/S0203030623700256
- Михайлов В.О., Диаман М., Тимошкина Е.П., Хайретдинов С.А. Оценка относительной роли постсейсмического крипа и вязкоупругой релаксации после Симуширского землетрясения 15.11.2006 г. с использованием данных спутниковой геодезии и гравиметрии // Вестник МГУ. Сер. Физика и астрономия. 2018. № 5. С. 84–89.
- Михайлов В.О., Пане И., Хаен М., Тимошкина Е.П., Бонвало С., Ляховский В., Диаман М., Девирон О. Сравнительный анализ временных вариаций глобального гравитационного поля по данным спутников Грейс в областях трех недавних гигантских землетрясений // Физика Земли. 2014. № 2. С. 29–40.
- Михайлов В.О., Тимошкина Е.П., Смирнов В.Б., Хайретдинов С.А., Дмитриев П.Н. К вопросу о природе постсейсмических деформационных процессов в районе землетрясения Мауле, Чили, 27.02.2010 г. // Физика Земли. 2020. № 6. С. 38–47.https://doi.org/10.31857/S0002333720060046
- Смирнов В.Б., Михайлов В.О., Конвисар А.М. Постсейсмические процессы в области землетрясения Чигник на Аляске 29.07.2021. Часть II: развитие смещений во времени и связь с афтершоковой активностью // Физика Земли. 2024. № 4. С. 35–49.
- Ali S.T., Freed A.M. Contemporary deformation and stressing rates in Southern Alaska // Geophys. J. Int. 2010. V. 183. P. 557–571. https://doi.org/10.1111/j.1365-246X.2010.04784.x
- Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame // Geochem. Geophys. Geosyst. 2011. V. 12. P. 1–13.https://doi.org/10.1029/2011GC003751
- Cross R.S., Freymueller J.T. Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska // J. Geophys. Res. 2008. V. 113. P. 1–19. https://doi.org/10.1029/2007JB005136
- Davies J., Sykes L., House L., Jacob K. Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential // J. Geophys. Res. 1981. V. 86. P. 3821‒3855. https://doi.org/10.1029/JB086iB05p03821
- De Viron O., Panet I., Mikhailov V., Van Camp M., Diament M. Retrieving earthquake signature in grace gravity solutions // Geophys. J. Int. 2008. V. 174. P. 14–20. https://doi.org/10.1111/j.1365-246X.2008.03807.x
- Diament M., Mikhailov V., Timoshkina E. Joint inversion of GPS and high-resolution GRACE gravity data for the 2012 Wharton basin earthquakes // J. Geodyn. 2020. V. 136. Article ID 101722. https://doi.org/10.1016/j.jog.2020.101722
- Drooff C., Freymueller J.T. New constraints on slip deficit on the Aleutian megathrust and Inflation at Mt. Veniaminof, Alaska from repeat GPS measurements // Geophys. Res. Lett. 2021. V. 48. P. 1–12. https://doi.org/10.1029/2020GL091787
- Elliott J.L., Grapenthin R., Parameswaran R. M., Xiao Z., Freymueller J.T., Fusso L. Cascading rupture of a megathrust // Sci. Adv. 2022. V. 8. P. 1–10.https://doi.org/10.1126/sciadv.abm4131
- Freymueller J.T., Woodard H., Cohen S.C., Cross R., Elliott J., Larsen C.F., et al. Active deformation processes in Alaska, based on 15 years of GPS measurements / J.T. Freymueller, P.J. Haeussler, R.L. Wesson, G. Ekström (eds.). Active tectonics and seismic potential of Alaska. AGU. 2008. P. 1–42. https://doi.org/10.1029/179GM02
- Han S., Sauber J., Pollitz F. Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Is-land // Geophys. Res. Lett. 2016. V. 43. P. 3169–3177. https://doi.org/10.1002/2016GL068167
- Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M. Slab2, a comprehensive subduction zone geometry model // Science. 2018. V. 362(6410). P. 58–61. http://doi.org/10.1126/science.aat4723
- Hsu Y.-J., Simons M., Avouac J.-P., Galetzka J., Sieh K., Chlieh M., Natawidjaja D., Prawirodirdjo L., Bock Y. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra // Science. 2006. V. 312(5782). P. 1921–1926.https://doi.org/10.1126/science.1126960
- Kogan M.G., Vasilenko N.F., Frolov D.I., Frymueller J.T. Rapid postseismic relaxation after the great 2006–2007 Kuril earthquakes from GPS observations in 2007–2011 // J. Geophys. Res. 2013. V. 118. P. 3691–3706. https://doi.org/10.1002/jgrb.50245.
- Li S., Freymueller J.T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska‐Aleutian subduction zone // Geophys. Res. Lett. 2018. V. 45. P. 3453–3460.https://doi.org/ 10.1002/2017GL076761
- Liu C., Lay T., Xiong X. The 29 July 2021 Mw 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: Re-rupture of the western 2/3 of the 1938 rupture zone // Geophys. Res. Lett. 2022. V. 49. № 4. P. 1–9. https://doi.org/10.1029/2021JB023676
- Mikhailov V., Tikhotsky S., Diament M., Panet I., Ballu V. Can tectonic processes be recovered from new gravity satellite data? // EPSL. 2004. V. 228. P. 281–297. https://doi.org/10.1016/j.epsl.2004.09.035
- Ozawa S., Nishimura T., Munekane H., Suito H., Kobayashi T., Tobita M., Imakiire T. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake Japan // J. Geophys. Res. 2012. V. 117. B07404. https://doi.org/10.1029/2011JB009120
- Perfettini H., Tavera, H., Kositsky A., Nocquet J.M., Bondoux F., Chlieh M., Sladen A., Audin L., Farber D., Soler P. Seismic and aseismic slip on the Central Peru megathrust // Nature. 2010. V. 465(7294). P. 78–81. https://doi.org/10.1038/nature09062
- Pollitz F.F. Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophys. J. Int. 1996. V. 125. P. 1–14. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x
- Pollitz F.F. Gravitational-viscoelastic postseismic relaxation on a layered spherical Earth // J. Geophys. Res. 1997. V. 102. P. 17921–17941. https://doi.org/10.1029/97JB01277
- Pollitz F.F. Postseismic relaxation theory on the spherical Earth // Bull. Seismol. Soc. Am. 1992. V. 82. P. 422–453.
- Pritchard M.E., Simons M. An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior // J. Geophys. Res. 2006. V. 111(B8). B08405.https://doi.org/10.1029/2006JB004258
- Suito H., Freymueller J.T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake // J. Geophys. Res. 2009. V. 114. P. 1–23.https://doi.org/10.1029/2008JB005954
- Vigny C., Socquet A., Peyrat S., Ruegg J.C., Métois M., Madariaga R., Morvan S., Lancieri M., Lacassin R., Campos J., Carrizo D. et al. The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS // Science. 2011. V. 332(6036). P. 1417–1421. https://doi.org/10.1126/science.1204132
- Ye L., Bai Y., Si D., Lay T., Cheung K.F., Kanamori H. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations // J. Geophys. Res. 2022. V. 127. P. 1–42.https://doi.org/10.1029/2021JB023676
- Ye L., Lay T., Kanamori H., Yamazaki Y., Cheung K.F. The 22 July 2020 Mw 7.8 Shumagin seismic gap earthquake: partial rupture of a weakly coupled megathrust // Earth Planet. Sci. Lett. 2021. V. 562. P. 1–12. https://doi.org/10.1016/J.EPSL.2021.116879
Supplementary files
