What Does the Archaeomagnetic Record of Fired Ceramics Reflect?
- 作者: Pilipenko O.V.1, Markov G.P.1, Salnaya N.V.2, Minaev P.A.1, Aphinogenova N.A.3
-
隶属关系:
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Geological Institute, Russian Academy of Sciences
- Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- 期: 编号 3 (2024)
- 页面: 107-128
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/256408
- DOI: https://doi.org/10.31857/S0002333724030077
- EDN: https://elibrary.ru/AJMYJX
- ID: 256408
如何引用文章
详细
A complex of archaeomagnetic and rock-magnetic studies is conducted to compare the archaeomagnetic intensity determined by the Thellier–Coe and Wilson methods with the known “true” value of the geomagnetic field during the firing of the ceramic samples manufactured on February 21, 2017 in Myshkin, Yaroslavl region, Russia.
The obtained results show two different values of archaeomagnetic intensity corresponding to two temperature intervals. The values obtained in the low-temperature interval (∼150–350°C) are approximately 13 µT lower than the true value, while the values obtained in the interval of ∼350–600°C are fairly close to the “true” ones. The cause of the phenomenon is likely due to the presence of small magnetic grains in the ceramic under study, which are close in size to superparamagnetic ones and are capable of resuming their growth upon heating and reaching the particle sizes in a single-domain state.
The results of rock-magnetic studies suggest that thermoremanent magnetization in the studied ceramics is carried by grains of oxidized magnetite, hematite, and possibly ε-Fe2O3.
全文:

作者简介
O. Pilipenko
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: pilipenko@ifz.ru
俄罗斯联邦, Moscow
G. Markov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: gpmarkov@yandex.ru
俄罗斯联邦, Moscow
N. Salnaya
Geological Institute, Russian Academy of Sciences
Email: natasavi@inbox.ru
俄罗斯联邦, Moscow
P. Minaev
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: ps1100@ya.ru
俄罗斯联邦, Moscow
N. Aphinogenova
Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: aphina312@mail.ru
俄罗斯联邦, Borok, Yaroslavl Region
参考
- Веселовский Р.В., Дубиня Н.В., Пономарев А.В. и др. Центр коллективного пользования Института физики Земли им. О.Ю. Шмидта РАН “Петрофизика, геомеханика и палеомагнетизм” // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0579. https://doi.org/10.5800/GT-2022-13-2-0579
- Виноградов Ю.К., Марков Г.П. О влиянии вторичного низкотемпературного прогрева на магнитное состояние многодоменного магнетита. Исследования в области палеомагнетизма и магнетизма горных пород / Щербакова В.В. (ред.). М.: ИФЗ РАН. 1989. С. 31–39.
- Сальная Н.В. Эволюция напряженности магнитного поля на территории Европейской части России во втором тысячелетии нашей эры. Дис. … канд. физ.-мат. наук. Санкт-Петербург. 2022. 210 с.
- Тейлор Дж. Введение в теорию ошибок. М.: Мир. 1985. 272 с.
- Bukhtiyarova G.A., Shuvaeva M.A, Bayukov O.A., Martyanov O.N. Facile synthesis of nanosized ε-Fe2O3 particles on the silica support // Journal of Nanoparticle Research. 2011. V. 13. № 10. Pp. 5527–5534.
- Coe R.S. Paleointensities of the Earth’s magnetic field determined from tertiary and quaternary rocks // J. Geophys. Res. 1967. V. 72. P. 3247–3262.
- Coe R.S., Gromme S., Mankinen E.A. Geomagnetic paleointensity from radiocarbon-dated flows on Hawaii and the question of the Pacific nondipole low // J. Geophys. Res. 1978. V. 83. P. 1740–1756.
- Gromme C.S.,Wright T.L., Peck D.L. Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii // J. Geophys. Res.1969. V. 74. P. 5277–5294.
- Kissel C., Laj C. Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determintions: application to Hawaiian basaltic long cores // Phys. Earth Planet. Inter. 2004. V. 147. P. 155–169.
- Kosterov A., Kovacheva M., Kostadinova-Avramova M., Minaev P., Salnaia N., Surovitskii L., Yanson S., Sergienko E., Kharitonskii P. High-coercvity magnetic minerals in archaeological baked clay and bricks // Geophys. J Int. 2021. V. 224. P. 1256–1271.
- Kurmoo M., Rehspringer J.L., Hutlova A., D’Orleans C., Vilminot S., Estournes C., Niznansky D. Formation of nanoparticles of ε-Fe2O3 from yttrium iron garnet in a silica matrix: an unusually hard magnet with a Morin-like transition below 150 K // Chem. Mater. 2005. V. 17. P. 1106–1114.
- Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties // Geophys. Res. Lett. 1990. V. 17. P. 159–162.
- Nagata T., Arai Y., Momose K. Secular variation of the geomagnetic total force during the last 5000 years // J. Geophys. Res. 1963. V. 68. P. 5277–5281.
- Namai A., Sakurai S., Nakajima M., Suemoto T., Matsumoto K., Goto M., Sasaki S., Ohkoshi S. Synthesis of an electromagnetic wave absorber for high-speed wireless communication // J. Am. Chem. Soc. 2009. V. 131. P. 1170–1173.
- Prevot M., Mankinen E.A., Coe R.S., Gromme S.C. The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models // J. Geophys. Res. 1985. V. 90. № B12. P. 10417–10448.
- Roberts A.P., Cui Y., Verosub K.L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and determination of components in mixed magnetic systems // J. Geophys. Res. 1995. V. 100. P. 17909–17924.
- Rietveld H.M. A profile refinement method for nuclear and magnetic structures // J. Appl. Crystallogr. 1969. V. 2. P. 65–71.
- Selkin P.A., Tauxe L. Long-term variations in palaeointensity // Philos. Trans. R. Soc. London, Ser A. 2000. V. 358. P. 1065–1088.
- Shcherbakova V.V., Shcherbakov V.P., Heider F. Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains // J. Geophys. Res. 2000. V. 105. P. 767–781.
- Thellier E., Thellier O. Sur l’intensité du champ magnéttique terrestre dans le passé historique et géologique // Ann. Geophys. 1959. V. 15. P. 285–378.
- Tronc E., Chaneac C., Jolivet J.P. Structural and magnetic characterization of ε-Fe2O3 // J. Solid State Chem. 1998. V. 139. P. 93–104.
- Wilson R.L. Paleomagnetism in Northern Iceland. Pt. 1: The thermal demagnetization of natural magnetic moments in rock // Geophys. J. Roy. Astr. Soc. 1961. V. 5. P. 45–69.
- Zijderveld J.D.A. Demagnetization of rocks: analysis of results. Methods in Paleomagnetism. Amstredam: Elsevier. 1967. P. 254–286.
补充文件
