The effects of the acoustic resonance induced in the atmosphere
- Authors: Surkov V.V.1,2, Pilipenko V.A.1
-
Affiliations:
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
- Issue: No 1 (2024)
- Pages: 57-67
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/254882
- DOI: https://doi.org/10.31857/S0002333724010042
- EDN: https://elibrary.ru/ELIERN
- ID: 254882
Cite item
Abstract
After strong earthquakes and volcanic eruptions, geomagnetic oscillations with frequencies of 3.5–4.0 mHz have sometimes been observed. In this paper, we theoretically study the probable cause of these phenomena, which is related to the vertical acoustic resonance arising between the Earth’s surface and the thermosphere due to the propagation of the atmospheric wave corresponding to the acoustic branch generated by surface displacements. In the plane layered model of the atmosphere and ionosphere with inclined geomagnetic field, we analyze the propagation of two-dimensional (2D) harmonic acoustic wave. The height of the reflecting atmospheric layer corresponds to the region of sharp temperature change close to the thermosphere boundary ∼80–90 km. In this case, the calculated fundamental resonant frequency is close to the frequencies of the observed oscillations. The solution of this problem is used to calculate currents and electromagnetic perturbations in the atmosphere and ionosphere. The ionospheric E-layer is considered in the thin layer approximation. In this approximation, the formulas describing the geomagnetic perturbations (GMP) in the ionosphere and on the Earth’s surface are derived. The GMP spectrum contains a sharp maximum at the frequency corresponding to the acoustic resonance. According to the calculations, close to the resonance frequency, the spectral powers of GMPs on the ground can reach 5–30 nT2/Hz, which is consistent with the results of ground-based measurements.
Full Text

About the authors
V. V. Surkov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation,Russian Academy of Sciences
Author for correspondence.
Email: surkovvadim@yandex.ru
Russian Federation, Moscow; Moscow
V. A. Pilipenko
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: surkovvadim@yandex.ru
Russian Federation, Moscow
References
- Голицын Г.С., Кляцкин В.И, Колебания земной атмосферы, вызываемые движениями земной поверхности // Изв. АН СССР. Физика атмосферы и океана. 1967. Т. 3. № 10. С. 1044–1052.
- Госсард Э., Хук У. Волны в атмосфере. М.: Мир. 1978. 532 с.
- Куницын В.Е., Шалимов С.Л. Ультранизкочастотные вариации магнитного поля при распространении в ионосфере акустико-гравитационных волн // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2011. № 5. С. 75
- Мартинес-Беденко В.А., Пилипенко В.А., Шиокава К., Акбашев Р.Р. Электромагнитные УНЧ/КНЧ-колебания, вызванные извержением вулкана Тонга // Солнечно-земная физика. 2023. Т. 9. № 1. С. 83–94. doi: 10.12737/szf-84202208
- Сорокин В.М., Ященко А.К., Сурков В.В. Генерация геомагнитных возмущений в ионосфере волной цунами // Геомагнетизм и аэрономия. 2019. Т. 59. № 2. С. 236–248. doi: 10.1134/S0016794019020135
- Ясюкевич Ю.В., Едемский И.К., Перевалова Н.П., Полякова А.С. Отклик ионосферы на гелио- и геофизические возмущающие факторы по данным GPS. Иркутск: изд-во ИГУ. 2013. 259 с.
- Astafyeva E., Maletckii B., Mikesell T.D., Munaibari E., Ravanelli M., Coisson P., et al. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations // Geophys. Res. Letters. 2022. V. 49. e2022GL098827. doi: 10.1029/2022GL098827
- Choosakul N., Saito A., Iyemori T., Hashizume M. Excitation of 4-min periodic ionospheric variations following the great Sumatra-Andaman earthquake in 2004 // J. Geophys. Res. 2009. V. 114. A10313, doi: 10.1029/2008JA013915
- Gavrilov B.G., Poklad Y.V., Ryakhovsky I.A., Ermak V.M., Achkasov N.S., Kozakova E.N. Global electromagnetic disturbances caused by the eruption of the Tonga volcano on 15 January 2022 // J. Geophys. Res.: Atmospheres. 2022. V. 127. e2022JD037411. https://doi.org/10.1029/2022JD037411
- Harding B.J., Wu Y.-J. J., Alken P., Yamazaki Y., Triplett C.C., Immel T.J., et al. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents // Geophys. Res. Lett. 2022. V. 49. e2022GL098577. doi: 10.1029/2022GL098577
- Iyemori T., Nose M., Han D.-S., Gao Y., Hashizume M., Choosakul N., Shinagawa H., Tanaka Y., Utsugi M., Saito A., McCreadie H., Odagi Y., Yang F. Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004 // Geophys. Res. Lett. 2005. V. 32. L20807, doi: 10.1029/2005GL024083
- Iyemori T., Tanaka Y., Odagi Y., Sano Y., Takeda M., Nose M., Utsugi M., Rosales D., Choque E., Ishitsuka J., Yamanaka S., Nakanishi K., Matsumura M., Shinagawa H. Barometric and magnetic observations of vertical acoustic resonance and resultant generation of field-aligned current associated with earthquakes // Earth Planets Space. 2013. V. 65. P. 901–909. doi: 10.5047/eps.2013.02.002
- Iyemori T., Nishioka M., Otsuka Y., Shinbori A. A confirmation of vertical acoustic resonance and field aligned current generation just after the 2022 Hunga Tonga Hunga Ha’apai volcanic eruption // Earth, Planets and Space. 2022. V. 74. P. 103, doi: 10.1186/s40623-022-01653-y
- Kanamori H., Mori J., Harkrider D.G. Excitation of atmospheric oscillations by volcanic eruptions // J. Geophys. Res. 1994. V. 99. P. 21947–21961.
- Matsumura M., Iyemori T., Tanaka Y., Han D., Nose M., Utsugi M., Oshiman N., Shinagawa H., Odagi Y. Tabata Y. Acoustic resonance between ground and thermosphere // Data Science Journal. 2009. V. 8. P. 68–77. doi: 10.2481/dsj.8.S68
- Nishida K., Kobayashi N., Fukao Y., Resonant oscillations between the solid Earth and the atmosphere // Science. 2000. V. 287. P. 2244–2246.
- Lognonné, P., Clevede E., Kanamori H., Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere // Geophys. J. Int. 1998. V. 135. P. 388–406.
- Saito A., Tsugawa T., Otsuka Y., Nishioka M., Iyemori T., Matsumura M., Saito S., Chen C.H., Goi Y., Choosakul N. Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake // Earth Planets Space. 2011. V. 63. P. 863–867.
- Shinagawa H., Iyemori T., Saito S., Maruyama T. A numerical simulation of ionospheric and atmospheric variations associated with the Sumatora earthquake on December 26, 2004 // Earth Planets Space. 2007. V. 59. P. 1015–1026.
- Shinbori A., Otsuka Y., Sori T., Nishioka M., Perwitasari S., Tsuda T., Nishitani N. Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga Hunga Ha′apai volcanic eruption as seen in GNSS TEC and SuperDARN Hokkaido pair of radars observations // Earth, Planets and Space. 2022. V. 74. P. 106. https://doi.org/10.1186/s40623-022-01665-8
- Sorokin V.M., Yashchenko A.K., Surkov V.V. Geomagnetic field perturbations resulted from tsunami wave impact on the ionosphere // Progress in Electromagnetics Research B. 2019. V. 85. P. 49–63. doi: 10.2528/PIERB19050201
- Tahira M., Acoustic resonance of the atmosphere at 3.7 mHz // J. Atmos. Science. 1995. V. 52. P. 2670–2674.
- Themens D.R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P.T. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption // Earth and Space Science Open Archive. 2022. doi: 10.1002/essoar.10510350.1
- Yamazaki Y., Soares G., Matzka J. Geomagnetic detection of the atmospheric acoustic resonance at 3.8 mHz during the Hunga Tonga eruption event on 15 January 2022 // J. Geophys. Res. 2022. V. 127. e2022JA030540. https://doi.org/10.1029/2022JA030540
- Zettergren M.D., Snively J.B. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events // J. Geophys. Res. 2015. V. 120. P. 8002–8024. https://doi.org/10.1002/2015JA0211-16
- Zhang S-R., Vierinen J., Aa E., Goncharenko L.P., Erickson P.J., Rideout W., Coster A.J., Spicher A. Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves // Front. Astron. Space Science. 2022. V. 9. 871275. doi: 10.3389/fspas.2022.871275
Supplementary files
