On Constructing Analytical Models of the Magnetic Field of Mercury from Satellite Data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract

—A new method is proposed for analytical description of the magnetic field of the Mercury from the data of satellite missions based on the local and regional versions of the linear integral representation method. The inverse problem on finding the sources of the field is reduced to solving ill-conditioned systems of linear algebraic equations with an approximately set right-hand part. The charts of the isolines of the z-component of the magnetic inductance vector in the Cartesian coordinate system rigidly connected with the planet, as well as the regional S-approximation of the field radial component are plotted. The results of the mathematical experiment on analytic continuation of the magnetic field towards the sources are presented.

作者简介

I. Stepanova

Schmidt Institute of Physics of the Erath, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tet@ifz.ru
Russia , 123242, Moscow

A. Yagola

Lomonosov Moscow State University

Email: tet@ifz.ru
Russia, Moscow

D. Luk’yanenko

Lomonosov Moscow State University

Email: tet@ifz.ru
Russia, Moscow

I. Kolotov

Lomonosov Moscow State University

Email: tet@ifz.ru
Russia, Moscow

参考

  1. Арнольд В.И., Хесин Б.А. Топологические методы в гидродинамике. М.: изд-во МЦНМО. 2007. 393 с.
  2. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по уравнениям математической физики. М.: Наука. 1980. 684 с.
  3. Владимиров В.В. Уравнения математической физики. М.: Наука. 1981. 512 с.
  4. Казанцев С.Г., Кардаков В.Б. Полоидально-тороидальное разложение соленоидальных векторных полей в шаре // Сибирский журн. индустриальной математики. 2019. Т. 22. № 3. С. 74–95.
  5. Раевский Д.Н., Степанова И.Э. О решении обратных задач гравиметрии с помощью модифицированного метода S-аппроксимаций // Физика Земли. 2015а. № 2. С. 44–54.
  6. Раевский Д.Н., Степанова И.Э. Модифицированный метод S-аппроксимаций. Региональный вариант // Физика Земли. 2015б. № 2. С. 55–66.
  7. Степанова И.Э., Щепетилов А.В., Погорелов В.В., Михайлов П.С. Структурно-параметрический подход при построении цифровых моделей рельефа и гравитационного поля Земли с использованием аналитических S-аппроксимаций // Геофизические процессы и биосфера. 2020. Т. 19. № 2. С. 107–116.
  8. Титов В.В., Степанов Р.А., Соколов Д.Д. Переходные режимы винтового динамо // Журнал экспериментальной и теоретической физики. 2020. Т. 157. № 10. С. 849–857.
  9. Фрик П.Г, Соколов Д.Д, Степанов Р.А. Вейвлет-анализ пространственно-временной структуры физических полей // Успехи физических наук. 2021. Т. 191.
  10. Ягола А.Г., Степанова И.Э., Ван Янфей, Титаренко В.Н. Обратные задачи и методы их решения. Приложения к геофизике. М.: Бином. 2014. 214 с.
  11. Acuna M., Connerney J., Ness N., Lin R., Mitchell D., Carlson C., McFadden J., Anderson K., Reme H., Mazelle C., Vignes D., Wasilewski P., Cloutier P. Global distribution of crustal magnetism discovered by the Mars Global SurveyorMAG/ERExperiment // Science. 1999. V. 284. P. 790–793.
  12. Alexeev I.I. et al. Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys // Icarus. 2010. V. 209. P. 23– 39. https://doi.org/10.1016/j.icarus.2010.01.024
  13. Alken P., Thébault E., Beggan C.D., Amit H., Aubert J., Baerenzung J. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets, and Space. 2021. V. 73.
  14. Anderson B. J., Acuña M. H., Lohr D. A., Scheifele J., Raval A., Korth H., Slavin J. A. The magnetometer instrument on MESSENGER // Space Sci. Rev. 2007.V. 131. P. 417–450. https://doi.org/10.1007/s11214-007-9246-7
  15. Anderson B. J., Acuña M. H., Korth H., Purucker M. E., Johnson C. L., Slavin J. A., Solomon S. C., McNutt R. L. The structure of Mercury’s magnetic field from MESSENGER’s first flyby // Science. 2008. V. 321. P. 82–85. https://doi.org/10.1126/science.1159081
  16. Anderson B. J. et al. The magnetic field of Mercury// Space Sci. Rev. 2010. V. 152. P. 307–339. https://doi.org/10.1007/s11214-009-9544-3
  17. Anderson B. J., Johnson C. L., Korth H., Purucker M. E., Winslow R. M., Slavin J. A., Solomon S. C., McNutt R. L., Raines J. M., Zurbuchen T. H. The global magnetic field of Mercury from MESSENGER orbital observations// Science. 2011. V. 333. P. 1859–1862. https://doi.org/10.1126/science.1211001
  18. Anderson B.J. et al. Low-degree structure in Mercury’s planetary magnetic field // J. Geophys. Res. 2012.V. 117. P. E00L12. https://doi.org/10.1029/2012JE004159
  19. Anderson B. J., Johnson C. L., Korth H. A magnetic disturbance index for Mercury’s magnetic field derived from MESSENGER magnetometer data // Geochem. Geophys. Geosyst. 2013. V. 14. P. 3875–3886. https://doi.org/10.1002/ggge.20242
  20. Arkani-Hamed J. An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data // J. Geophysical Research (Planets). 2002. V. 107. P. 5083. https://doi.org/10.1029/2001JE001835
  21. Benkhoff J., van Casteren J., Hayakawa H., Fujimoto M., Laakso H., Novara M., Ferri P., Middleton H. R., Ziethe R. BepiColombo–Comprehensive exploration of Mercury: Mission overview and science goals // Planet. Space Sci. 2010. V. 58. P. 2–20. https://doi.org/10.1016/j.pss.2009.09.020
  22. Cain J. C., Wang Z., Kluth C., Schmitz D. R. Derivation of a geomagnetic model to N = 63 // Geophys. J. 1989. V. 97. P. 431–441.
  23. Cao H., Aurnou J. M., Wicht J., Dietrich W., Soderlund K. M., Russell C. T. A dynamo explanation for Mercury’s anomalous magnetic field // Geophys. Res. Lett. 2014. V. 41. P. 4127–4134. https://doi.org/10.1002/2014GL060196
  24. Christensen U. R. A deep dynamo generating Mercury’s magnetic field // Nature 2006. V. 444. P. 1056–1058. https://doi.org/10.1038/nature05342
  25. Christensen U. R., Tilgner A. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos // Nature. 2004. V. 429. P. 169–171. https://doi.org/10.1038/nature02508
  26. Connerney J. E. P., Ness N. F., Acuna M. H. Zonal harmonic model of Saturn’s magnetic field from Voyager 1 and 2 observations // Nature. 1982. V. 298. P. 44–46. https://doi.org/10.1038/298044a0
  27. Dietrich W., Wicht J. A hemispherical dynamo model: Implications for the Martian crustal magnetization // Phys. Earth Planet. Inter. 2013. V. 217. P. 10– 21. https://doi.org/10.1016/j.pepi.2013.01.001
  28. Dyment J., Arkani-Hamed J. Equivalent source magnetic dipoles revisited // Geophys. Res. Lett. 1998. V. 25(11). P. 2003– 2006. https://doi.org/10.1029/98GL51331
  29. Emilia D. A. Equivalent sources used as an analytic base for processing total magnetic field profiles// Geophysics. 1973. V. 38. P. 339– 348. https://doi.org/10.1190/1.1440344
  30. Gudkova T., Stepanova I., Batov A., Shchepetilov A. Modified method S- and R-approximations in solving the problems of Mars’s morphology // Inverse Problems in Science and Engineering. 2021. V. 29. P. 790–804. https://doi.org/10.1080/17415977.2020.1813125
  31. Gudkova T., Stepanova I., Batov A. Density anomalies in subsurface layers of mars: model estimates for the Site of the InSight Mission Seismometer // Solar System Research. 2020. V. 54. P. 15–19. https://doi.org/10.1134/S0038094620010037
  32. Gubbins D. Time Series Analysis and Inverse Theory for Geophysicists. Cambridge Univ. Press. Cambridge. 2004.272 p.
  33. Holme R., Bloxham J. The magnetic fields of Uranus and Neptune: Methods and models// J. Geophys. Res. 1996. V. 101. P. 2177–2200. https://doi.org/10.1029/95JE03437
  34. Hood L.L., Oliveira J.S., Galluzzi V.D., Rothery A. Investigating sources of Mercury’s crustal magnetic field: further mapping of Messenger magnetometer data, JGR Planets. 29 August. 2018. https://doi.org/10.1029/2018JE005683
  35. Hulot G., Le Mouël J. L. A statistical approach to the Earth’s main magnetic field // Phys. Earth Planet. Inter. 1994. V. 82. P. 167– 183. https://doi.org/10.1016/0031-9201(94)90070-1
  36. Johnson C.L. et al. MESSENGER observations of Mercury’s magnetic field structure // J. Geophys. Res. 2012. V. 117. P. E00L14. https://doi.org/10.1029/2012JE004217
  37. Katanforoush A., Shahshahani M. (2003), Distributing points on the sphere // Exp. Math. 2003. V. 12. P. 199–209.
  38. Kolotov I.I., Lukyanenko D.V., Stepanova I.E., Wang Y., Yagola A.G., Recovering the magnetic properties of Mercury from satellite observations // Eurasian J. Mathematical and Computer Applications, 2022. V. 10. № 2. P. 26–41.
  39. Kutzner C., Christensen U. R. From stable dipolar towards reversing numerical dynamos // Phys. Earth Planet. Inter. 2002.V. 131. P. 29–45. https://doi.org/10.1016/S0031-9201(02)00016-X
  40. Langlais B., Purucker M. A polar magnetic paleopole associated with Apollinaris Patera, Mars // Planet. Space Sci. 2007.V. 55. P. 270–279. https://doi.org/10.1016/j.pss.2006.03.008
  41. Langlais B., Purucker M. E., Mandea M. Crustal magnetic field of Mars // J. Geophys. Res. 2004. V. 109. P. E02008. https://doi.org/10.1029/2003JE002048
  42. Lhuillier F., Aubert J., Hulot G. Earth’s dynamo limit of predictability controlled by magnetic dissipation // Geophys. J. Int. 2011.V. 186. P. 492–508. https://doi.org/10.1111/j.1365-246X.2011.05081.x
  43. Margot J. L., Peale S. J., Jurgens R. F., Slade M. A., Holin I. V. Large longitude libration of Mercury reveals a molten core// Science. 2007. V. 316. P. 710–714. https://doi.org/10.1126/science.1140514
  44. Maus S., Rother M., Stolle C., Mai W., Choi S., Lühr H., Cooke D., Roth C. Third generation of the Potsdam Magnetic Model of the Earth (POMME) // J. Geophys. Res. 2006. V. 7. P. Q07008. https://doi.org/10.1029/2006GC001269
  45. Mayhew M. A. Inversion of satellite magnetic anomaly data // J. Geophys. 1979. V. 45. P. 119–128.
  46. Messenger Mission: Magnetometer (MAG) Instrument. – URL: https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id= pds: //PPI/mess-mag-calibrated/data/mbf/2011
  47. Milillo A., Fujimoto M., Murakami G., Benkhoff J., Zender J., Aizawa, S. et al. Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission // Space Science Reviews. 2020. V. 216. P. 93.
  48. Mittelholz A., Johnson C.L., Feinberg J.M., Langlais B., Philips R.J. Timing of the martian dynamo: New constraints for a core field 4.5 and 3.7 Ga ago // Science Advances. 2020. V. 6.
  49. Ness N. F., Behannon K. W., Lepping R. P., Whang Y. C., Schatten K. H. Magnetic field observations near Mercury: Preliminary results from Mariner 10 // Science. 1974. V. 185. P. 151–160. https://doi.org/10.1126/science.185.4146.151
  50. Ness N.F., Behannon K. W., Lepping R. P., Whang Y. C. The magnetic field of Mercury, 1 // J. Geophys. Res. 1975. V. 80. P. 2708–2716. https://doi.org/10.1029/JA080i019p02708
  51. Oliveira J.S., Langlais B., Pais M.A., Amit H. A modified equivalent source dipole method to model partially distributed magnetic field measurements, with application to Mercury, JGR Planets. 15 May. 2015. https://doi.org/10.1002/2014JE004734
  52. Philpott L. C., Johnson C. L., Winslow R. M., Anderson B. J., Korth H., Purucker M. E. Solomon S. C. Constraints on the secular variation of Mercury’s magnetic field from the combined analysis of MESSENGER and Mariner 10 data // Geophys. Res. Lett. 2014. V. 41. P. 6627–6634. https://doi.org/10.1002/2014GL061401
  53. Plagemann S. Model of the internal constitution and temperature of the planet Mercury// J. Geophys. Res. 1965. V. 70. P. 985– 993. https://doi.org/10.1029/JZ070i004p00985
  54. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes in C. The Art of Scientific Computing. 2nd ed. Cambridge Univ. Press. 1992.
  55. Purucker M., Ravat D., Frey H., Voorhies C., Sabaka T., Acuña M. An altitude-normalized magnetic map of Mars and its interpretation // Geophys. Res. Lett. 2000. V. 27. P. 2449–2452. https://doi.org/10.1029/2000GL000072
  56. Purucker M., Langlais B., Olsen N., Hulot G., Mandea M. The southern edge of cratonic North America: Evidence from new satellite magnetometer observations // Geophys. Res. Lett. 2002. V. 29. P. 1342. https://doi.org/10.1029/2001GL013645
  57. Purucker M. E., Sabaka T. J., Langel R. A. Conjugate gradient analysis: A new tool for studying satellite magnetic data sets // Geophys. Res. Lett. 1996. V. 23. P. 507–510. https://doi.org/10.1029/96GL00388
  58. Purucker M. E., Langel R. A., Rajaram M., Raymond C. Global magnetization models with a priori information // J. Geophys. Res. 1998. V. 103. P. 2563–2584. https://doi.org/10.1029/97JB02935
  59. Reshetnyak M.Yu. Spatial Spectra of the geomagnetic Field in the Observations and Geodynamo Models // Izvestiya, Physics of the Solid Earth. 2015. V. 51. № 3. P. 354–361.
  60. Salnikov A., Stepanova I., Gudkova T., Batov A. Analytical modeling of the magnetic field of Mars from satellite data using modified S-approximations // Doklady Earth Sciences. 2021. V. 499. P. 575–579.
  61. Schubert G., Chan K. H., Liao X., Zhang K. Planetary dynamos: Effects of electrically conducting flows overlying turbulent regions of magnetic field generation // Icarus. 2004. V. 172. P. 305–315. https://doi.org/10.1016/j.icarus.2004.06.007
  62. Smith D. E. et al. Gravity field and internal structure of Mercury from MESSENGER // Science. 2012. V. 336. P. 214–217. https://doi.org/10.1126/science.1218809
  63. Solomon S. C. et al. The MESSENGER mission to Mercury: Scientific objectives and implementation // Planet. Space Sci. 2001. V. 49. P. 1445–1465. https://doi.org/10.1016/S0032-0633(01)00085-X
  64. Stanley S., Elkins-Tanton L., Zuber M. T., Parmentier E. M. Mars’ paleomagnetic field as the result of a single-hemisphere dynamo // Science. 2008. V. 321. P. 1822–1825. https://doi.org/10.1126/science.1161119
  65. Stevenson D. J. Saturn’s luminosity and magnetism // Science. 1980. V. 208. P. 746–748. https://doi.org/10.1126/science.208.4445.746
  66. Stevenson D. J. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn // Geophys. Astrophys. Fluid Dyn. 1982. V. 21. P. 113–127. https://doi.org/10.1080/03091928208209008
  67. Strakhov V., Stepanova I. The S-approximation method and its application to gravity problems // Izvestiya, Physics of the Solid Earth. 2002. V. 16. P. 91–107.
  68. Strakhov V., Stepanova I. Solution of gravity problems by the S-approximation method (Regional Version) // Izvestiya, Physics ofthe Solid Earth. 2002. V. 16. P. 535–544.
  69. Thébault E., Schott J. J., Mandea M. Revised spherical cap harmonic analysis (R-SCHA): Validation and properties // J. Geophys. Res. 2006. V. 111. P. B01102. https://doi.org/10.1029/2005JB003836
  70. Toepfer S., Narita Y., Glassmeier K.H. et al. The Mie representation for Mercury’s magnetic field // Earth Planets Space . 2021. V. 73. P. 65. https://doi.org/10.1186/s40623-021-01386-4
  71. Uno H., Anderson B. J., Korth H., Johnson C. L., Solomon S.C. Modeling Mercury’s internal magnetic field with smooth inversions // Earth Planet. Sci. Lett. 2009. V. 285. P. 328–339. https://doi.org/10.1016/j.epsl.2009.02.032
  72. Verhoeven O., Tarits P., Vacher P., Rivoldini A., van Hoolst T., Composition and formation of Mercury: Constraints from future electrical conductivity measurements // Planet. Space Sci. 2009. V. 57. P. 296– 305. https://doi.org/10.1016/j.pss.2008.11.015
  73. Vilim R., Stanley S., Hauck S. A. Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field // J. Geophy. Res. 2010.V. 115. P. E11003. https://doi.org/10.1029/2009JE003528
  74. von Frese R. R. B., Hinze W. J., Braile L. W. Spherical Earth gravity and magnetic anomaly analysis by equivalent point source inversion // Earth Planet. Sci. Lett. 1981. V. 53. P. 69–83. https://doi.org/10.1016/0012-821X(81)90027-3
  75. Wang Y., Kolotov I.I., Lukyanenko D.V., Stepanova I.E., Yagola A.G., Methods of recovering of the magnetic fields using experimental data. Марчуковские научные чтения-2022: Тезисы Междунар. конф., 3–7 октября 2022 г, место издания Ин-т вычислит. математики и матем. геофизики СО РАН. Академгородок, Новосибирск, Россия, тезисы. с. 10.
  76. Whaler K. A., Purucker M. E. A spatially continuous magnetization model for Mars // J. Geophys. Res. 2005.V. 110. P. E09001. https://doi.org/10.1029/2004JE002393
  77. Wicht J., Heyner D. Mercury’s magnetic field in the MESSENGER era. Planetary Geodesy and Remote Sensing / S. Jin (ed.). CRC Press.2014. P. 223–262. https://doi.org/10.1201/b17624-11

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (2MB)
4.

下载 (1MB)
5.

下载 (2MB)
6.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##