Micromagnetic Calculations of the Domain Structure of Submicron- and Micron-Sized Magnetite Grains
- Authors: Shcherbakov V.P.1, Sycheva N.K.1
-
Affiliations:
- Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Issue: No 2 (2023)
- Pages: 193-211
- Section: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/139008
- DOI: https://doi.org/10.31857/S0002333723020126
- EDN: https://elibrary.ru/LJHMZT
- ID: 139008
Cite item
Abstract
The evolution of the domain structure (DS) of cubic submicron- and micron-sized magnetite particles has been studied in detail during “cooling” of specimens from the Curie temperature Тс to room temperature Тr followed by their “reheating” to Тс in order to determine the degree of irreversibility of DS changes during heat treatment and their possible effects on the thermoremanent magnetization (TRM) properties. It is shown that typical magnetic configurations in particles up to 2 μm in size have flower or vortex shapes with one or two vortices. A model of the formation of thermoremanent magnetization (TRM) in submicron-sized pseudo-single-domain particles (PSD) is proposed based on an expansion of Neel’s single-domain thermofluctuation model of TRM acquisition. According to the model, the equality of blocking and deblocking temperatures is retained for submicron PSD grains. Consequently, for this magnetic fraction, the Thellier laws of pTRM additivity and independence must also be valid.
About the authors
V. P. Shcherbakov
Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Author for correspondence.
Email: shcherbakovv@list.ru
152742 Russia, Yaroslavl Region, Borok
N. K. Sycheva
Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Author for correspondence.
Email: sycheva@borok.yar.ru
152742 Russia, Yaroslavl Region, Borok
References
- Афремов Л.Л., Панов А.В. Остаточная намагниченность ультрадисперсных магнетиков. Владивосток: изд-во Дальневосточного университета. 2004. 192 с.
- Белоконь В.И., Харитонский П.В. Оценка влияния магнитостатического взаимодействия частиц на постседиментационную намагниченность // Изв. АН СССР. Сер. Физика Земли. 1985. № 9. С. 106–109.
- Большаков А.С, Щербакова В.В. Термомагнитный критерий определения доменной структуры ферромагнетиков // Изв. АН СССР. Сер. Физика Земли. 1979. № 2. С. 38–47.
- Щербаков В.П., Сычева Н.К. Численное моделирование доменной структуры зерен магнетита субмикронных размеров // Физика Земли. 2001. № 4. С. 62–73.
- Щербаков В.П., Щербакова В.В. О магнитостатическом взаимодействии в системе однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1975. № 9. С. 101–104.
- Almeida T.P., Kasama T., Muxworthy A.R., Williams W., Nagy L., Dunin-Borkowski R. E. Observing thermomagnetic stability of nonideal magnetite particles: Good paleomagnetic recorders? // Geophys. Res. Lett. 2014. V. 41. P. 7041–7047. https://doi.org/10.1002/2014GL061432
- Almeida T.P., Muxworthy A.R., Kovács A., Williams W., Nagy L., Conbhuí P.Ó., Frandsen C., Supakulopas R., Dunin-Borkowski R.E. Direct observation of the thermal demagnetization of magnetic vortex structures in nonideal magnetite recorders // Geophys. Res. Lett. 2016. V. 43. P. 8426–8434. https://doi.org/10.1002/2016GL070074
- Bisotti M.-A., Cortés-Ortuño D., Pepper R., Wang W., Beg M., Kluyver T., Fangohr H. Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package // J. Open Research Software. 2018. V. 6(1). P. 22. https://doi.org/10.5334/jors.223
- Dunlop D.J., Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press. 1997. 573 p. https://doi.org/10.1017/CBO9780511612794
- Dunlop D.J. The Hunting of the “Psark” // J. Geomagn. Geoelektr. 1977. V. 29. P. 293–318.
- Eisenstein I., Aharoni A. Magnetization curling in superparamagnetic spheres // Phys. Review. 1976. V. B.14.5. P. 2078–2095.
- Enkin R.J., Dunlop D.J. A micromagnetic study of pseudo-single-domain remanence in magnetite // J. Geophys. Res. 1987. V. 92. P. 12726–12740.
- Fabian K., Kirchner A., Williams W., Heider F., Leib1 T., Huber A. Three-dimensional micromagnetic calculations for magnetite using FFT // Geophys. J. Int. 1996. V. 124. P. 89–104.
- Fabian K. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles // Earth and Planetary Science Letters. 2001. V. 188 (1–2). P. 45–58. https://doi.org/10.1016/S0012-821X(01)00313-2
- Fabian K. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles // Earth and Planetary Science Letters. 2001. V. 188 (1–2). P. 45–58. https://doi.org/10.1016/S0012-821X(01)00313-2
- Fabian K., Shcherbakov V.P. Energy barriers in three-dimensional micromagnetic models and the physics of thermoviscous magnetization // Geophys. J. Int. 2018. V. 215. P. 314–324. https://doi.org/10.1093/gji/ggy285
- Fu S., Cui W., Hu M., Chang R., Donahue M.J., Lomakin V. Finite-difference micromagnetic solvers with the object-oriented micromagnetic framework on Graphics Processing Units // IEEE Transactions on Magnetics. 2016. V. 52(4). № 7100109. https://doi.org/10.1109/TMAG.2015.2503262
- Fukuma K., Dunlop D.J. Three-dimensional micromagnetic modeling of randomly oriented magnetite grains (0.03–0.3 mm) // J. Geophys. Res. 2006. V. 111. B12S11. https://doi.org/10.1029/2006JB004562
- Heide F., Williams W. Note on temperature dependence of exchange constant in magnetite // Geophys. Res. Lett. 1988. V. 15(2). P. 184–187. https://doi.org/10.1029/GL015i002p00184
- Khakhalova E., Moskowitz B.M., Williams W., Biedermann A.R., Solheid P. Magnetic vortex states in small octahedral particles of intermediate titanomagnetite // Geochemistry, Geophysics, Geosystems. 2018. V. 19. P. 3071–3083. https://doi.org/10.1029/2018GC007723
- Landau L., Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies // Phys. Z. Sowietunion. 1935. V. 8. P. 153–169.
- Lascu I., Einsle J.F., Ball M.R., Harrison R.J. The vortex state in geologic materials: A micromagnetic perspective // J. Geophysical Research: Solid Earth. 2018. V. 123. P. 7285–7304. https://doi.org/10.1029/2018JB015909
- Leliaert J., Dvornik M., Mulkers J., De Clercq J., Milošević M.V., Van Waeyenberge B. Fast micromagnetic simulations on GPU—recent advances made with mumax3 // J. Phys. D: Appl. Phys. 2018. V. 51. 123002 (31pp). https://doi.org/10.1088/1361-6463/aaab1c
- McClelland E., Sugiura N. A kinematic model of TRM acquisition in multidomain magnetite // Phys. Earth Planet. Inter. 1987. V. 46. P. 9–23.
- McClelland E., Shcherbakov V.P. Metastability of domain state in multidomain magnetite: Consequences for remanence acquisition // J. Geophys. Res. 1995. V. 100. P. 3841–3857. https://doi.org/10.1029/94JB02772
- Moon T.S., Merrill R.T. The magnetic moment of nonuniformly magnetized grains // Phys. Earth Planet. Inter. 1984. V. 34. P. 186–194.
- Moon T.S., Merrill R.T. Nucleation theory and domain states in multidomain magnetic material // Phys. Earth Planet. Inter. 1985. V. 37. P. 214–222.
- Moon T.S., Merrill R.T. Single-Domain Theory of Remanent Magnetization // J. Geophys. Res. 1988. V. 93. B8. P. 9202–9210.
- Nagy L., Williams W., Muxworthy A.R., Fabian K., Almeida T.P., Conbhuí P.Ó., Shcherbakov V.P. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales // Proceedings of the National Academy of Sciences. 2017. V. 114. P. 10356–10360. https://doi.org/10.1073/pnas.1708344114
- Nagy L., Williams W., Tauxe L., Muxworthy A. From nano to micro: Evolution of magnetic domain structures in multidomain magnetite // Geochemistry, Geophysics, Geosystems. 2019. V. 20. P. 2907–2918. https://doi.org/10.1029/2019GC008319
- Néel L. Some theoretical aspects of rock-magnetism // Advances in Physics. 1955. V. 4(14). P. 191–243. https://doi.org/10.1080/00018735500101204
- Conbhuí Ó.P., Williams W., Fabian K., Ridley P., Nagy L., Muxworthy A.R. MERRILL: Micromagnetic earth related robust interpreted language laboratory // Geochemistry, Geophysics, Geosystems. 2018. V. 19. P. 1080–1106. https://doi.org/10.1002/2017GC007279
- Rave W., Fabian K., Hubert A. Magnetic states of small cubic particles with uniaxial anisotropy // J. Magnetism and Magnetic Materials. 1998. V. 190(3). P. 332–348. https://doi.org/10.1016/S0304-8853(98)00328-X
- Schmidt V.A. A multidomain model of thermoremanence // Earth and planet. Sci. Lett. 1973. V. 20. P. 440–446.
- Shcherbakov V.P., Taraschan S.A., Lamash B.E. Domain structure of PSD and MD grains and its temperature dependence // Phys. Earth Planet. Inter. 1990a. V. 63. P. 23–31.
- Shcherbakov V.P., Schmidt P.W., Sycheva N.K., Lamash B.E. Micromagnetic formulation for the personal computer // Phys. Earth Planet. Inter. 1990b. V. 65. P. 15–27.
- Shcherbakov V.P., McClelland E., Shcherbakova V.V. A model of multidomain thermoremanent magnetization incorporating temperature-variable domain structure // J. Geophysical Research. 1993. V. 98(B4). P. 6201–6216. https://doi.org/10.1029/92JB02572
- Shcherbakov V.P., Shcherbakova V.V. On suitability of the Thellier method of paleointensity determinations to pseudosingledomain and multidomain grains // Geophys. J. Int. 2001. V. 146. P. 20–30. https://doi.org/10.1046/j.0956_540x.2001.01421.x
- Shcherbakov V.P., Lhuillier F., Sycheva N.K. Exact Analytical Solutions for Kinetic Equations Describing Thermochemical Remanence Acquisition for Single-Domain Grains: Implications for Absolute Paleointensity Determinations // J. Geophys. Res. Solid Earth. 2021. V. 126. № 5. P. 1–24. https://doi.org/10.1029/2020JB021536
- Shcherbakova V.V., Shcherbakov V.P., Heider F. Properties of partial thermoremanent magnetization in PSD and MD magnetite grains // J. Geophys. Res. 2000. V. 105. P. 767–782.
- Thellier E., Thellier O. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique // Ann. Géophys. 1959. V. 15. P. 285–376.
- Williams W., Dunlop D.J. Three-dimensional micromagnetic modelling of ferromagnetic domain structure // Nature. 1989. V. 337. P. 634–637.
Supplementary files
