A REVIEW OF CURRENT TRENDS AND CHALLENGES IN THE APPLICATION OF DIGITAL TWINS AND ARTIFICIAL INTELLIGENCE IN ENERGY SYSTEMS OF THE OIL AND GAS INDUSTRY

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents a review of the current state and development directions of digital twin (DT) and artificial intelligence (AI) technologies, with a focus on their application in energy systems at oil and gas industry facilities. The architectural foundations of DTs are examined, including the six-level model and its classification by levels and application domains. Key AI methods used in conjunction with DTs are discussed, such as machine learning for load and renewable generation forecasting, reinforcement learning for control optimization under uncertainty, and generative AI for decision support and scenario modeling. Applied solutions are considered in detail, including predictive maintenance of equipment, optimization of associated petroleumgas utilization, and the development of intelligent energy management systems. Current challenges and issues are identified, including data processing infrastructure selection, cybersecurity, and economic and legal regulation. Prospects for DT implementation are outlined, taking into account international and Russian environmental requirements, in particular the target of utilizing at least 95% of associated petroleum gas by 2027. Examples of domestic and international developments and studies demonstrate that DT and AI technologies have significant potential for addressing tasks such as equipment monitoring, load forecasting, production process optimization, and automated energy system control in the oil and gas sector.

作者简介

N. Sergeev

Novosibirsk State Technical University,

编辑信件的主要联系方式.
Email: nikita.n.sergeev@gmail.ru
Novosibirsk, Russia

D. Lazarev

Novosibirsk State Technical University,

Email: nikita.n.sergeev@gmail.ru
Novosibirsk, Russia

Y. Kazantsev

Novosibirsk State Technical University,

Email: nikita.n.sergeev@gmail.ru
Novosibirsk, Russia

A. Rusina

Novosibirsk State Technical University,

Email: nikita.n.sergeev@gmail.ru
Novosibirsk, Russia

参考

  1. Стенников В.А. Устойчивое развитие энергетики: тенденции и вызовы // Энергетическая политика. 2023. № 2(180). С.32–39.
  2. Воропай Н.И., Губко М.В., Ковалев С.П. и др.Проблемы развития цифровой энергетики в России // Проблемы управления. 2019. № 1.С.1–14.
  3. Бушуев В.В., Новиков Н.Л., Новиков А.Н.Цифровизация экономики и энергетики: перспективы и проблемы // Экономические стратегии. 2019. Т. 21. № 6. С.96–105.
  4. Skilton M., Hovsepian F.The 4th industrial revolution // Springer Nature. 2018.
  5. Прохоров А., Лысачев М.Цифровой двойник. Анализ, тренды, мировой опыт. М.: ООО “АльянсПринт”, 2020. 401 с.
  6. MezaE.B.M., Souza D.G.B.D., Copetti A., et al.Tools, technologies and frameworks for digital twins in the oil and gas industry: An In-Depth Analysis // Sensors. 2024. V. 24. No. 19. Р. 6457.
  7. Song Z., Hackl C.M., Anand A. et al.Digital twins for the future power system: An overview and a future perspective // Sustainability. 2023. V. 15.No. 6. P. 5259.
  8. Heluany J.B., Gkioulos V. A review on digital twins for power generation and distribution // International Journal of Information Security. 2024. V. 23. No. 2. P. 1171–1195.
  9. Барахтенко Е., Стенников В., Соколов Д., Майоров Г.Принципы построения цифрового двойника для решения задач проектирования интегрированных энергетических систем // Материалы IV Международного семинара по информационным, вычислительным и управляющим системам для распределенных сред (ICCS-DE 2022).4–8 июля 2022 г., Иркутск, Россия. С.36–42.
  10. Воропай Н. И., Массель Л. В., Колосок И. Н., Массель А. Г. ИТ-инфраструктура для построения интеллектуальных систем управления развитием и функционированием систем энергетики на основе цифровых двойников и цифровых образов // Известия Российской академии наук. Энергетика. 2021. № 1. С.3–13.
  11. Kritzinger W., Karner M., Traar G. et al.Digital Twin in manufacturing: a categorical literature review and classification // Ifac-PapersOnline. 2018. V. 51. No. 11. P. 1016–1022.
  12. Кокорев Д.С., Юрин А.А.Цифровые двойники: понятие, типы и преимущества для бизнеса //Colloquium-journal.2019. № 10(34). С.31–35.
  13. Redelinghuys A.J.H., Basson A.H., Kruger K. A six-layer architecture for the digital twin: a manufacturing case study implementation // Journal of Intelligent Manufacturing.2020.V. 31.No. 6.P. 1383–1402.
  14. Ковалев С.П. Проектирование информационного обеспечения цифровых двойников энергетических систем // Системы и средства информатики.2020. Т. 30. № 1. С. 66–81.
  15. Habbak H., Mahmoud M., Metwally K. Load forecasting techniques and their applications in smart grids // Energies.2023.V. 16.No. 3.P. 1480.
  16. Илюшин П.В. Системный подход к развитию и внедрению распределенной энергетики и возобновляемых источников энергии в России // Энергетика. 2022. Т. 4. С.20–27.
  17. Сергеев Н.Н., Матренин П.В. Обзор международного опыта в прогнозировании генерации возобновляемых источников энергии с помощью методов машинного обучения // iPolytech Journal. 2023.Т.27. № 2.С.354–369.
  18. Hosseini M.M., Parvania M. Resilient operation of distribution grids using deep reinforcement learning // IEEE Transactions on Industrial Informatics. 2021. V. 18. No. 3. P. 2100–2109.
  19. Petrusev A., Putratama M.A., Rigo-Mariani R. et al.Reinforcement learning for robust voltage control in distribution grids under uncertainties // Sustainable Energy, Grids and Networks. 2023. V. 33. P. 100959.
  20. Mohammadabadi S.M.S., Entezami M., Moghaddam A.K. et al.Generative artificial intelligence for distributed learning to enhance smart grid communication // International Journal of Intelligent Networks. 2024. V. 5. P.267–274.
  21. Crespo M.A., Pérez O.D.Leveraging generative AI for modelling and optimization of maintenance policies in industrial systems // Information. 2025. V. 16. No. 3. P. 217.
  22. D’Amico R.D., Erkoyuncu J.A., Addepalli S., Penver S.Cognitive digital twin: an approach to improve the maintenance management // CIRP Journal of Manufacturing Science and Technology. 2022. V. 38. P.613–630.
  23. Van Dinter R., Tekinerdogan B., Catal C.Predictive maintenance using digital twins: A systematic literature review // Information and Software Technology. 2022. V. 151. P. 107008.
  24. Don M.G., Liyanarachchi S., Wanasinghe T.R.Development framework for an electrical submersible pump (ESP) // Archives of Advanced Engineering Science. 2025. V. 3. No. 1. P.35–43.
  25. Nezhadfard M., Khalili-Garakani A.Power generation as a useful option for flare gas recovery: enviro-economic evaluation of different scenarios // Energy. 2020. V. 204. P. 117940.
  26. Asadi J., Yazdani E., Dehaghani Y.H., Kazempoor P.Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions // Energy conversion and management. 2021. V. 236. P. 114076.
  27. Илюшин П.В. Перспективные направления развития распределительных сетей при интеграции локальных интеллектуальных энергосистем // Электроэнергия. Передача и распределение. 2021. № 4. С.70–80.
  28. Banihabib R., Assadi M.Towards a low-carbon future for offshore oil and gas industry: a smart integrated energy management system with floating wind turbines and gas turbines // Journal of Cleaner Production. 2023. V. 423. P. 138742.
  29. Zhou M., Yan J., Feng D.Digital twin framework and its application to power grid online analysis // CSEE Journal of Power and Energy Systems. 2019. V. 5. No. 3. P.391–398.
  30. Liao H., Zhou Z., Liu N. et al.Cloud-edge-device collaborative reliable and communication-efficient digital twin for low-carbon electrical equipment management // IEEE Transactions on Industrial Informatics.2022. V. 19. No. 2. P. 1715–1724.
  31. Массель Л.В. Современный этап развития искусственного интеллекта (ИИ) и применение методов и систем ИИ в энергетике // Информационные и математические технологии в науке и управлении. 2021. № 4(24). С.5–20.
  32. Correia J.B., Rodrigues F., Santos N. et al.Data management in digital twins for the oil and gas industry: beyond the osdu data platform // Journal of Information and Data Management. 2022. V. 13. No. 3.
  33. Rodríguez F., Chicaiza W.D., Sánchez A., Escaño J.M.Updating digital twins: Methodology for data accuracy quality control using machine learning techniques // Computers in Industry. 2023. V. 151. P. 103958.
  34. Korotkova N., Benders J., Mikalef P., Cameron D.Maneuvering between skepticismand optimism about hyped technologies: Building trust in digital twins // Information & Management. 2023. V. 60. No. 4. P. 103787.
  35. Boje C., Guerriero A., Kubicki S., Rezgui Y.Towards a semantic construction Digital Twin: directions for future research // Automation in construction. 2020. V. 114. P. 103179.
  36. da Rocha H., Pereira J., Abrishambaf R., Espirito Santo A. An interoperable digital twin with the IEEE 1451 standards // Sensors. 2022. V. 22. No. 19. P. 7590.
  37. Lin S.W., Migliori D., Young D. et al.System of systems models enabling interoperability for value creation // Industry IoT Consortium and Digital Twin Consortium. 2024.
  38. Amini S., Pasqualetti F., Mohsenian-Rad H. Dynamic load altering attacks against power system stability: attack models and protection schemes // IEEE Transactions on Smart Grid. 2016. V. 9. No. 4. P. 2862–2872.
  39. Maleki S., Pan S., Lakshminarayana S., Konstantinou C.Survey of load-altering attacks against power grids: Attack impact, detection and mitigation // IEEE Open Access Journal of Power and Energy.2025.V. 12.P.220–334.
  40. Гурина Л.А., Зорина Т.Г., Томин Н.В., Прусов С.Г.Угрозы и уязвимости объектов киберфизической энергетической системы при цифровой трансформации ее свойств // Вестник Казанского государственного энергетического университета. 2022. Т. 14. № 3(55). С.89–98.
  41. LaGrange E. Developing a Digital Twin: the roadmap for oil and gas optimization // SPE offshore Europe conference and exhibition. September 2019.
  42. Филимонова И.В., Проворная И.В., Немов В. Ю.,Дочкина Д.Д.Актуальные вопросы добычи и квалифицированного использования попутного нефтяного газа в России // Бурение и нефть. 2022. Т. 1. С.26–33.
  43. Agho M.O.,Eyo-Udo N.L.,Onukwulu E.C.et al.Digital twin technology for real-time monitoring of energy supply chains // International Journal of Research and Innovation in Applied Science. 2024. V. 9. No. 12. P.564–592.
  44. Chen X., Hu D., Cao W., et al.Path of digital technology promoting realization of carbon neutrality goal in China’s energy industry // Bulletin of Chinese Academy of Sciences (Chinese Version). 2021. V. 36. No. 9. P. 1019–1029.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».