Technological prospects for industrial energy supply based on wind and air turbine power plants with underground compressed air accumulators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analysis of energy supply technologies for consumers of megawatt power according to given schedules of consumption of electrical and thermal energy based on wind power plants and air turbine units with underground compressed air accumulators in the geological and climatic conditions of the Russian Arctic in the area of the Taimyr Peninsula is given and in the areas adjacent to it. An analysis of the wind energy potential in the studied region, as well as modern technologies for its industrial transformation and use, was carried out. The basics of the creation and use of underground storage facilities for the accumulation of compressed air and natural gas created in rock salt deposits are outlined, taking into account the climatic and geological conditions of the Russian Arctic. The physical foundations and technologies of pneumatic conversion and use of air as an energy carrier are considered. A conceptual scheme has been developed for converting the energy supply of the ports of Dudinka and Khatanga to “green” energy. Energy and economic assessments of the proposed method of energy production based on wind farms and air turbine units with underground compressed air accumulators were carried out.

Full Text

Restricted Access

About the authors

V. A. Kazaryan

Limited Liability Company “Gazprom geotechnology”

Author for correspondence.
Email: v.kazaryan@gazpromgeotech.ru
Russian Federation, Moscow

V. G. Nikolaev

Autonomous Non-Profit Organization “Scientific Information Center “ATMOGRAPH” (ANO SIC “ATMOGRAPH”)

Email: v.kazaryan@gazpromgeotech.ru
Russian Federation, Moscow

N. N. Kostenko

Limited Liability Company “Gazprom geotechnology”

Email: N.Kostenko@gazpromgeotech.ru
Russian Federation, Moscow

R. Z. Akhmetzyanov

Limited Liability Company “Gazprom geotechnology”

Email: R.Akhmetzyanov@gazpromgeotech.ru
Russian Federation, Moscow

A. A. Gamova

Autonomous Non-Profit Organization “Scientific Information Center “ATMOGRAPH” (ANO SIC “ATMOGRAPH”)

Email: atmograph@gmail.com
Russian Federation, Moscow

Y. A. Sizova

Limited Liability Company “Gazprom geotechnology”

Email: y.sizova@gazpromgeotech.ru
Russian Federation, Moscow

References

  1. Комплексная программа социально-экономического развития Таймырского Долгано-Ненецкого муниципального района. – Р/д.: http://www.regionz.ru/index.php
  2. Генеральный план Муниципального образования “Город Дудинка, 2021”. Электронный ресурс: http://www.gorod-dudinka.ru/gradostroitelstvo/generalnyj-plan-goroda-dudinki
  3. Приказы Министерства тарифной политики Красноярского края от 29.12.202 г. № 114-э и № 108-э.
  4. Приложение № 4 к постановлению Администрации города Дудинки от 23.05.2023 № 60.
  5. Приказ министерства тарифной политики Красноярского края от 20.12.2021 № 447-п.
  6. Стратегия социально-экономического развития Таймырского Долгано-Ненецкого муниципального района до 2030 года. 2019 г.
  7. Троицкий В. Хатанга. Города и поселки Красноярского края. — Красноярское книжное издательство, 1987.
  8. Генеральный план муниципального образования “Сельское поселение Хатанга”, 2012 г. Электронный реурс: http://hatanga24.ru/opendata/generalnyy-plan-sela-khatanga/
  9. Nikolaev V.G. Resource and feasibility study of large-scale development and use of wind power in Russia. “ATMOGRAPH”, 2011.
  10. Ганага С.В., Кудряшов Ю.И., Николаев В.Г., Николаев В.В. Методика определения оптимальных параметров энергокомплексов на базе дизельных, газопоршневых, газотурбинных и ветровых и фотоэлектрических установок с учетом местного ветрового и солнечного потенциала и графиков потребляемой мощности. Cб. труд. межд. науч. прак. конф. Возобновляемая и малая энергетика. Москва, 2015. С. 78–93.
  11. Казарян В.А. Физико-технические основы крупномасштабного подземного аккумулирования энергоносителей. Ижевский институт компьютерных исследований. Москва–Ижевск. 2023. 1070 с.
  12. Казарян В.А. Н. А. Эдиашвили, А. И. Игошин, В. Г. Грицаенко, В. А. Котова. Геологические и технологические основы строительства и эксплуатации подземных хранилищ газонефтепродуктов в отложениях каменной соли. Ижевский институт компьютерных исследований. Москва–Ижевск. 2023. 760 стр. 709.
  13. ГОСТ Р 7092 2023. Возобновляемая энергетика. Ветроэнергетика. Ветроэлектрические станции. Рекомендации по определению ветроклиматических характеристик и технико-экономических показателей малых ветроэнергетических установок. ФГБУ “РСТ”, 186 с.
  14. Нормативы численности промышленно-производственного персонала электростанций с газотурбинными стационарными установками. ОАО “ЦОТэнерго”. Утверждены заместителем Председателя Правления ОАО РАО “ЕЭС России” Я.М. Уринсоном 03.12.2004.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average annual wind speed at a height of 100 m according to data from aerological stations.

Download (306KB)
3. Fig. 2. Territorial distribution of the capacity factor of the Gamesa 170–8000 wind turbine with a tower height of 135 m.

Download (312KB)
4. Fig. 3. Standard deviation of the E 126 wind turbine power for adjacent 10-minute periods in the study area, % of the wind turbine nominal power.

Download (117KB)
5. Fig. 4. Duration of downtime periods of E 126 wind turbines in the study area in hours.

Download (107KB)
6. Fig. 5. Scheme of a wind power plant in combination with a VAGTU and with underground air and fuel accumulators: 1 ‒ wind power plant; 2 ‒ transformer; 3 ‒ air compressor; 4 ‒ underground air accumulator; 5 ‒ underground fuel accumulator; 6 ‒ gas turbine; 7 ‒ electric power generator.

Download (143KB)
7. Fig. 6. Scheme of a wind power plant in combination with a surfactant and a vacuum turbine: 1 ‒ wind power plant; 2 ‒ transformer; 3 ‒ air compressor; 4 ‒ underground air accumulator; 5 ‒ air dryer; 6 ‒ air turbine; 7 ‒ electric power generator.

Download (133KB)
8. Fig. 7. Scheme of the location of deposits and manifestations of rock salt on the Siberian platform (according to R. G. Matukhin and P. N. Sokolov, 1991): ■ – deposits and manifestations of rock salt, 🞐 – salt deposits inferred from geological and geophysical data.

Download (109KB)
9. Fig. 8. Scheme of distribution of salt domes in the Nordvik-Khatanga salt-bearing region (N.A. Shumak, 1973): – boundary of distribution of salt deposits; ● – identified salt domes; ○ – salt domes inferred from geological or geophysical data.

Download (171KB)
10. Fig. 9. Location of rock salt deposits exposed by wells in the northwestern part of the Siberian platform (according to P.I. Sokolov, 1975, 1977): 🔵 – wells that expose rock salt deposits.

Download (107KB)
11. Fig. 10. Change in the air pressure at the wellhead (blue line) and the air volume in the surfactant (red line) in the daily cycle of its operation: Pmax is the air pressure at the wellhead corresponding in time to the start of the morning air extraction from the surfactant; Pmin is the air pressure at the wellhead corresponding in time to the end of the daily cycle of surfactant operation; Qmax is the air volume in the surfactant corresponding in time to the start of the morning air extraction from the surfactant; Qmin is the air volume in the surfactant at the end of the daily cycle of surfactant operation.

Download (116KB)
12. Fig. 11. Change in air pressure at the wellhead of a surfactant in the weekly cycle of its operation: a – air injection; b – morning stop; c – morning air extraction; g – daytime stop; d – evening air extraction; e – night stop.

Download (125KB)
13. Fig. 12. Cost price of the VAVTU electric power plant with weekly and daily production and consumption of compressed air: 1 – VAVTU with a weekly air supply in the SAV; 2 – VAVTU with a daily supply; 3 – daytime tariff for electric power; 4 – nighttime tariff for electric power.

Download (149KB)
14. Fig. 13. Comparison of the cost price of traditional fuel energy sources and VAVTU with three-day production and consumption of compressed air: 1 - gas-fired CHP; 2 - coal-fired CHP; 3 - fuel oil-fired CHP; 4 - diesel power plant; 5 - VAVTU in the area of ​​the village of Khatanga; 6 - VAVTU in the area of ​​the village of Dikson.

Download (162KB)

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».