Dynamics of Phytotoxicity Indicators of Ordinary Chernozem when it is Contaminated with Silver Nanoparticles
- Authors: Tsepina N.I.1, Kolesnikov S.I.1, Minnikova T.V.1, Ruseva A.S.1
-
Affiliations:
- Southern Federal University, Academy of Biology and Biotechnology
- Issue: No 7 (2024)
- Pages: 82-87
- Section: Ecotoxicology
- URL: https://journals.rcsi.science/0002-1881/article/view/262887
- DOI: https://doi.org/10.31857/S0002188124070107
- EDN: https://elibrary.ru/CFIYVS
- ID: 262887
Cite item
Abstract
The dynamics of phytotoxicity indicators (germination and length of radish roots) of ordinary chernozem when contaminated with silver nanoparticles was studied. In laboratory conditions, ordinary chernozem was contaminated with silver nanoparticles (1, 10 and 100 mg/kg) for 3, 10, 30, 90 and 180 days. It was found that the more silver nanoparticles were introduced into the soil, the greater the decrease in germination and length of radish roots. There was no restoration of germination and length of radish roots with an increase in the period from the moment of contamination. In this study, the maximum toxic period from the moment of contamination for each indicator was identified by its sensitivity to silver nanoparticles and informativeness. The maximum toxicity of silver nanoparticles in relation to the root length and germination of radishes was noted on the 10th and 30th days, respectively. The results can be used to assess the phytotoxicity of soils contaminated with silver nanoparticles.
Keywords
Full Text

About the authors
N. I. Tsepina
Southern Federal University, Academy of Biology and Biotechnology
Email: loko261008@yandex.ru
Russian Federation, prodp. Stachki 194/1, Rostov-on-Don 344090
S. I. Kolesnikov
Southern Federal University, Academy of Biology and Biotechnology
Email: loko261008@yandex.ru
Russian Federation, prodp. Stachki 194/1, Rostov-on-Don 344090
T. V. Minnikova
Southern Federal University, Academy of Biology and Biotechnology
Author for correspondence.
Email: loko261008@yandex.ru
Russian Federation, prodp. Stachki 194/1, Rostov-on-Don 344090
A. S. Ruseva
Southern Federal University, Academy of Biology and Biotechnology
Email: loko261008@yandex.ru
Russian Federation, prodp. Stachki 194/1, Rostov-on-Don 344090
References
- Khanna V.K. Nanomaterials and their properties // Integrated Nanoelectronics. New Delhi: Springer, 2016. P. 25–41.
- Oliveira C.R.S., Silva Júnior A.H., Immich A.P.S., Fiates J. Use of advanced materials in smart textile manufacturing mater // Lett. 2022. V. 316. 132047. https://doi.org/10.1016/j.matlet.2022.132047
- Bhattacharyya A., Duraisamy P., Govindarajan M., Buhroo A.A., Prasad R. Nano-biofungicides: emerging trend in insect pest control // Adv. Applicat. Fungal Nanobiotechnol. 2016. P. 307–319. https://doi.org/10.1007/978–3–319–42990–8_15
- Júniora J.A.H.S., Oliveira M.P.V., Oliveira C.R.S., Júnior F.W. Reichert impacts of metallic nanoparticles application on the agricultural soils microbiota // J. Hazard. Mater. Adv. 2022. V. 7. 100103. https://doi.org/10.1016/j.hazadv.2022.100103
- Kaningini A.G., Nelwamondo A.M., Azizi S., Maaza M., Mohale K.C. Metal nanoparticles in agriculture: A Review of possible use // Coatings. 2022. V. 12. 1586. https://doi.org/10.3390/coatings12101586
- Ahmadov I.S., Ramazanov M.A., Gasimov E.K., Rzayev F.H., Veliyeva S.B. The migration study of nanoparticles from soil to the leaves of plants // Biointerface Res. Appl. Chem. 2020. V. 10. P. 6101–6111. https://doi.org/10.33263/BRIAC105.61016111
- Kabata-Pendias A. Trace elements in soils and plants. 4th Ed. Boca Raton, FL: Crc Pressрр, 2010. 548 p.
- Huang Y.N., Qian T.T., Dang F., Yin Y.G., Li M., Zhou D.M. Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils // Nat. Commun. 2019. V. 10. P. 4–11. https://doi.org/10.1038/s41467-019-11643-6
- Yildirim D., Sasmaz A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey) // J. Geochem. Explor. 2017. V. 182. P. 228–234. https://doi.org/10.1016/j.gexplo.2016.11.005
- Forstner C., Orton T.G., Wang P., Kopittke P.M., Dennis P.G. Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing // Environ. Pollut. 2019. V. 255. 113274. https://doi.org/10.1016/j.envpol.2019.113274
- Grün A., Straskraba S., Schulz S., Schloter M., Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamysoil // J. Environ. Sci. 2018. V. 69. P. 12–22. https://doi.org/10.1016/j.jes.2018.04.013
- Tsepina N., Kolesnikov S., Minnikova T., Timoshenko А., Kazeev K. Soil contamination by silver and assessment of its ecotoxicity // Rev. Agricult. Sci. 2022. V. 10. P. 186–205. https://doi.org/10.7831/ras.10.0_186
- Makama S., Piella J., Undas A. Dimmers W.J., Peters R., Puntes V.F., van den Brink N.W. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil // Environ. Pollut. 2016. V. 218. Р. 870–878. https://doi.org/10.1016/j.envpol.2016.08.016
- Kolesnikov S., Tsepina N., Minnikova T., Kazeev K., Mandzhieva S., Sushkova S., Minkina T., Mazarji M., Singh R.K., Rajput V.D. Influence of silver nanoparticles on the biological indicators of Haplic Chernozem // Plants. 2021. V. 10. 1022. https://doi.org/ 10.3390/plants10051022
- Cvjetko P., Milošić A., Domijan A.-M., Vinković Vrček I., Tolić S., Peharec Štefanić P., Letofsky-Papst I., Tkalec M., Balen B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots // Ecotoxicol. Environ. Saf. 2017. V. 137. P. 8–28. https://doi.org/10.1016/j.ecoenv.2016.11.009
- Thuesombat P., Hannongbua S., Akasit S., Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth // Ecotoxicol. Environ. Saf. 2014. V. 104. P. 302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022
- Vannini C., Domingo G., Onelli E., De Mattia F., Bruni I., Marsoni M., Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings // J. Plant Physiol. 2014. V. 171. P. 1142–1148. https://doi.org/10.1016/j.jplph.2014.05.002
- Yan C., Huang J., Cao C., Li R., Ma Y., Wang Y. Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil // Environ. Sci. Pollut. Res. 2020. V. 27. P. 8058–8070. https://doi.org/10.1007/s11356-019-07347-5
- Ottoni C.A., Lima Neto M.C., Leo P., Ortolan B.D., Barbieri E., De Souza A.O. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms // Chemosphere. 2020. V. 239. 124698. https://doi.org/10.1016/j.chemosphere.2019.124698
- Eivazi F., Afrasiabi Z., Jose E. Pedosphere effects of silver nanoparticles on the activities of soil enzymes involved in carbon and nutrient cycling // Pedosphere. 2018. V. 28. P. 209–214. https://doi.org/10.1016/S1002-7
- World Reference Base for Soil Resources 2022. International soil classification system for naming soils and creating legends for soil maps. 4th ed. International Union of Soil Sciences (IUSS), Vienna, Austria, ISBN 979-8-9862451-1-9
- Michels C., Perazzoli S., Soares M. Inhibition of the enriched culture of ammonium-oxidizing bacteria by two different nanoparticles: silver and magnetite // Common. Environ. Sci. 2017. V. 586. Р. 995–1002. https://doi.org/10.1016/j.scitotenv.2017.02.080
- Aznar R., Barahona F., Geiss O., Ponti J., Luis T.J., Barrero-Moreno J. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS // Talanta. 2017. V. 175. P. 200–208. https://doi.org/10.1016/j.talanta.2017.07.048
- Kolesnikov S.I., Tsepina N.I., Sudina L.V., Minnikova T.V., Kazeev K. Sh., Akimenko Yu.V. Silver ecotoxicity estimation by the soils state biological indicators // Appl. Environ. Soil Sci. 2020. Р. 1–9. https://doi.org/10.1155/2020/1207210
- Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Исследование фитотоксичности свинца для растений редиса и салата при выращивании на разных типах почв // Агрохимия. 2019. № 6. С. 72–80. https://doi.org/10.1134/S0002188119030050
- Минникова Т.В., Русева А.С., Колесников С.И., Ревина С.Ю., Гайворонский В.Г. Влияние биочара на экологическое состояние чернозема обыкновенного при загрязнении нефтью, бензином и мазутом // Агрохимия. 2022. № 9. С. 84–93. https://doi.org/10.31857/S0002188122090095
- Минникова Т.В., Минин Н.С., Колесников С.И., Горовцов А.В., Чистяков В.А. Оценка фитотоксичности чернозема обыкновенного при применении Bacillus sp. и биочара для стимуляции разложения пожнивных остатков озимой пшеницы (Triticum aestivum L.) // Агрохимия. 2023. № 5. С. 60–69. https://doi.org/10.31857/S0002188123050058
- Бабьева И.П., Зенова Г.М. Биология почв М.: Изд-во Моск. ун-та, 1983. 248 с.
- Kolesnikov S.I., Yaroslavtsev M.V., Spivakova N.A., Kazeev K.Sh. Comparative assessment of the biological tolerance of chernozems in the South of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment // Euras. Soil Sci. 2013.V. 46. № 2. Р. 176–181.
- Цепина Н.И., Колесников С.И., Минникова Т.В., Русева А.С. Сравнительная оценка фитотоксичности наночастиц серебра разного размера // Агрохим. вестн. 2023. № 3. С. 80–85. https://doi.org/10.24412/1029-2551-2023-3-017
- Lahuta L.B., Szablinska-Piernik J., Stałanowska K., Głowacka K., Horbowicz M. The Size-Dependent effects of silver nanoparticles on germination, early seedling development and polar metabolite profile of wheat (Triticum aestivum L.) // Inter. J. Mol. Sci. 2022. V. 23. Р. 13255. https://doi.org/10.3390/ijms232113255
- Венжик Ю.В., Мошков И.Е., Дыкман Л.А. Влияние наночастиц металлов и их оксидов на фотосинтетический аппарат растений // Изв. РАН. Сер. биол. 2021. № 2. С. 137–152. https://doi.org/10.31857/S0002332921020144
- Дыкман Л.А., Богатырёв В.А., Соколов О.И., Плотников В.К., Репко Н.В., Салфетников А.А. Взаимодействие наночастиц золота, серебра и магния с растительными объектами // Политемат. сетев. электр. научн. журн. Кубан. ГАУ. 2016. Т. 120. С. 675–705.
- Pereira S.P.P., Jesus F., Aguiar S., de Oliveira R., Fernandes M., Ranville J., Nogueira A.J.A. Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects // Sci. Total Environ. 2018. V. 618. P. 1389–1399. https://doi.org/10.1016/j.scitotenv.2017.09.275
- Falco W.F., Scherer M.D., Oliveira S.L., Wender H., Colbeck I., Lawson T., Caires A.R.L. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange // Sci. Total Environ. 2020. V. 701. P. 134816. https://doi.org/10.1016/j.scitotenv.2019.134816
- Асанова А.А., Полонский В.И. Воздействие наночастиц серебра на фотосинтезирующие организмы // Достиж. науки и техн. АПК. 2017. Т. 31. № 8. С. 12–15.
Supplementary files
