On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation
- 作者: Grudsky S.M.1, Rybkin A.V.2
-
隶属关系:
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
- University of Alaska
- 期: 卷 104, 编号 3-4 (2018)
- 页面: 377-394
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151329
- DOI: https://doi.org/10.1134/S0001434618090067
- ID: 151329
如何引用文章
详细
The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.
作者简介
S. Grudsky
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
编辑信件的主要联系方式.
Email: grudsky@math.cinvestav.mx
墨西哥, Nacional, 07360
A. Rybkin
University of Alaska
Email: grudsky@math.cinvestav.mx
美国, Fairbanks, 757500
补充文件
