On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

作者简介

S. Grudsky

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico

编辑信件的主要联系方式.
Email: grudsky@math.cinvestav.mx
墨西哥, Nacional, 07360

A. Rybkin

University of Alaska

Email: grudsky@math.cinvestav.mx
美国, Fairbanks, 757500

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018