On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation
- Autores: Grudsky S.M.1, Rybkin A.V.2
-
Afiliações:
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
- University of Alaska
- Edição: Volume 104, Nº 3-4 (2018)
- Páginas: 377-394
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151329
- DOI: https://doi.org/10.1134/S0001434618090067
- ID: 151329
Citar
Resumo
The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.
Palavras-chave
Sobre autores
S. Grudsky
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Autor responsável pela correspondência
Email: grudsky@math.cinvestav.mx
México, Nacional, 07360
A. Rybkin
University of Alaska
Email: grudsky@math.cinvestav.mx
Estados Unidos da América, Fairbanks, 757500
Arquivos suplementares
