Stability Analysis of Distributed-Order Hilfer–Prabhakar Systems Based on Inertia Theory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The notion of a distributed-order Hilfer–Prabhakar derivative is introduced, which reduces in special cases to the existing notions of fractional or distributed-order derivatives. The stability of two classes of distributed-order Hilfer–Prabhakar differential equations, which are generalizations of all distributed or fractional differential equations considered previously, is analyzed. Sufficient conditions for the asymptotic stability of these systems are obtained by using properties of generalized Mittag-Leffler functions, the final-value theorem, and the Laplace transform. Stability conditions for such systems are introduced by using a new definition of the inertia of a matrix with respect to the distributed-order Hilfer–Prabhakar derivative.

Авторлар туралы

M. Mashoof

Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch

Email: ah_refahi@liau.ac.ir
Иран, Lahijan, 1616

A. Refahi Sheikhani

Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch

Хат алмасуға жауапты Автор.
Email: ah_refahi@liau.ac.ir
Иран, Lahijan, 1616

H. Saberi Najafi

Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch

Email: ah_refahi@liau.ac.ir
Иран, Lahijan, 1616

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018