Existence of Infinitely Many Solutions for Δγ-Laplace Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this article, we study the existence of infinitelymany solutions for the boundary–value problem

\( - {\Delta _\gamma }u + a\left( x \right)u = f\left( {x,u} \right)in\Omega ,u = 0on\partial \Omega \)
, where Ω is a bounded domain with smooth boundary in ℝN (N ≥ 2) and Δγ is a subelliptic operator of the form
\({\Delta _\gamma }: = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}} \right)} ,{\partial _{{x_j}}}: = \frac{\partial }{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \cdots ,\gamma N} \right)\)
. Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.

作者简介

D. Huong

Department of Mathematics

Email: dtluyen.dnb@moet.edu.vn
越南, Ninh Binh City

L. Hanh

Department of Mathematics

Email: dtluyen.dnb@moet.edu.vn
越南, Ninh Binh City

D. Luyen

Department of Mathematics

编辑信件的主要联系方式.
Email: dtluyen.dnb@moet.edu.vn
越南, Ninh Binh City

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018