Existence of Infinitely Many Solutions for Δγ-Laplace Problems


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this article, we study the existence of infinitelymany solutions for the boundary–value problem

\( - {\Delta _\gamma }u + a\left( x \right)u = f\left( {x,u} \right)in\Omega ,u = 0on\partial \Omega \)
, where Ω is a bounded domain with smooth boundary in ℝN (N ≥ 2) and Δγ is a subelliptic operator of the form
\({\Delta _\gamma }: = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}} \right)} ,{\partial _{{x_j}}}: = \frac{\partial }{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \cdots ,\gamma N} \right)\)
. Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.

About the authors

D. T. Huong

Department of Mathematics

Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City

L. T. H. Hanh

Department of Mathematics

Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City

D. T. Luyen

Department of Mathematics

Author for correspondence.
Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.