Existence of Infinitely Many Solutions for Δγ-Laplace Problems
- Authors: Huong D.T.1, Hanh L.T.1, Luyen D.T.1
-
Affiliations:
- Department of Mathematics
- Issue: Vol 103, No 5-6 (2018)
- Pages: 724-736
- Section: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150858
- DOI: https://doi.org/10.1134/S000143461805005X
- ID: 150858
Cite item
Abstract
In this article, we study the existence of infinitelymany solutions for the boundary–value problem
\( - {\Delta _\gamma }u + a\left( x \right)u = f\left( {x,u} \right)in\Omega ,u = 0on\partial \Omega \)![]()
, where Ω is a bounded domain with smooth boundary in ℝN (N ≥ 2) and Δγ is a subelliptic operator of the form \({\Delta _\gamma }: = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}} \right)} ,{\partial _{{x_j}}}: = \frac{\partial }{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \cdots ,\gamma N} \right)\)![]()
. Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.About the authors
D. T. Huong
Department of Mathematics
Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City
L. T. H. Hanh
Department of Mathematics
Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City
D. T. Luyen
Department of Mathematics
Author for correspondence.
Email: dtluyen.dnb@moet.edu.vn
Viet Nam, Ninh Binh City
Supplementary files
