On the zero-dimensionality of the limit of the sequence of generalized quasiconformal mappings
- Autores: Sevost’yanov E.A.1
-
Afiliações:
- Ivan Franko Zhytomir State University
- Edição: Volume 102, Nº 3-4 (2017)
- Páginas: 547-555
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150188
- DOI: https://doi.org/10.1134/S0001434617090279
- ID: 150188
Citar
Resumo
The paper is devoted to the study of the properties of a class of space mappings that is more general than that of bounded distortion mappings (aka quasiregular mappings). It is shown that the locally uniform limit of a sequence of mappings f: D → ℝn of a domain D ⊂ ℝn, n ≥ 2, satisfying one inequality for the p-modulus of families of curves is zero-dimensional. This statement generalizes a well-known theorem on the openness and discreteness of the uniform limit of a sequence of bounded distortion mappings.
Palavras-chave
Sobre autores
E. Sevost’yanov
Ivan Franko Zhytomir State University
Autor responsável pela correspondência
Email: brusin2006@rambler.ru
Ucrânia, Zhytomir
Arquivos suplementares
